cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-67 of 67 results.

A295380 Number of canonical forms for separation coordinates on hyperspheres S_n, ordered by increasing number of independent continuous parameters.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 8, 5, 1, 6, 20, 22, 8, 1, 11, 49, 73, 46, 11, 1, 23, 119, 233, 206, 87, 15, 1, 46, 288, 689, 807, 485, 147, 19, 1, 98, 696, 1988, 2891, 2320, 1021, 236, 24, 1, 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1, 451, 4062, 15322, 31350, 38216, 28586, 13088, 3525, 520, 35, 1, 983, 9821, 41558, 97552, 139901, 127465, 74280, 27224, 5989, 730, 41, 1
Offset: 1

Views

Author

Tom Copeland, Nov 21 2017

Keywords

Comments

Table 1 of the Schöbel and Veselov paper with initial 1 added. Reverse of Table 2 of the Devadoss and Read paper.
Apparently A032132 contains the row sums.
From Petros Hadjicostas, Jan 28 2018: (Start)
In this triangle, which is read by rows, for 0 <= k <= n-1 and n>=1, let T(n,k) be the number of inequivalent canonical forms for separation coordinates of the hypersphere S^n with k independent continuous parameters. It is the mirror image of sequence A232206, that is, T(n, k) = A232206(n+1, n-k) for 0 <= k <= n-1 and n>=1. (Triangular array A232206(N, K) is defined for N >= 2 and 1 <= K <= N-1.)
If B(x,y) = Sum_{n,k>=0} T(n,k)*x^n*y^k (with T(0,0) = 1, T(0,k) = 0 for k>=1, and T(n,k) = 0 for 1 <= n <= k), then B(x,y) = 1 + (x/2)*(B(x,y)^2/(1-x*y*B(x,y)) + (1 + x*y*B(x,y))*B(x^2,y^2)/(1-x^2*y^2*B(x^2,y^2))). This can be derived from the bivariate g.f. of A232206. See the comments for that sequence.
Let S(n) := Sum_{k>=0} T(n,k). The g.f. of S(n) is B(x, y=1). If we let y=1 in the above functional equation, we get x*B(x,1) = x + (1/2)*((x*B(x,1))^2/(1-x*B(x,1)) + (1 + x*B(x,1))*x^2*B(x^2,1)/(1-x^2*B(x^2,1))). After some algebra, we get 2*x*B(x,1) = x + (1/2)(x*B(x,1)/(1-x*B(x,1)) + (x*B(x,1) + x^2*B(x^2,1))/(1-x^2*B(x,1))), i.e., 2*x*B(x,1) = x + BIK(x*B(x,1)), where we have the "BIK" (reversible, indistinct, unlabeled) transform of C. G. Bower. This proves that S(n) = A032132(n+1) for n>=0, which is Copeland's claim above.
Note that for the second column we have T(n,k=2) = A048739(n-2) for 2 <= n < = 10, but T(11,2) = 4062 <> 4059 = A048739(9). In any case, they have different g.f.s (see the formula section below).
(End)

Examples

			From _Petros Hadjicostas_, Jan 27 2018: (Start)
Triangle T(n,k) begins:
n\k      0     1     2     3     4     5     6    7   8  9
----------------------------------------------------------------
(S^1)    1,
(S^2)    1,    1,
(S^3)    2,    3,    1,
(S^4)    3,    8,    5,    1,
(S^5)    6,   20,   22,    8,    1,
(S^6)   11,   49,   73,   46,   11,    1,
(S^7)   23,  119,  233,  206,   87,   15,    1,
(S^8)   46,  288,  689,  807,  485,  147,   19,   1,
(S^9)   98,  696, 1988, 2891, 2320, 1021,  236,  24,  1,
(S^10) 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1,
...
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Jan 28 2018: (Start)
G.f.: If B(x,y) = Sum_{n,k>=0} T(n,k)*x^n*y^k (with T(0,0) = 1, T(0,k) = 0 for k>=1, and T(n,k) = 0 for 1 <= n <= k), then B(x,y) = 1 + (x/2)*(B(x,y)^2/(1-x*y*B(x,y)) + (1 + x*y*B(x,y))*B(x^2,y^2)/(1-x^2*y^2*B(x^2,y^2))).
If c(N,K) = A232206(N,K) and C(x,y) = Sum_{N,K>=0} c(N,K)*x^N*y^K (with c(1,0) = 1 and c(N,K) = 0 for 0 <= N <= K), then C(x,y) = x*B(x*y, 1/y) and B(x,y) = C(x*y, 1/y)/(x*y).
Setting y=0 in the above functional equation, we get x*B(x,0) = x + (1/2)*((x*B(x,0))^2 + x^2*B(x^2,0)), which is the functional equation for the g.f. of the first column. This proves that T(n,k=0) = A001190(n+1) for n>=0 (assuming T(0,0) = 1).
The g.f. of the second column is B_1(x,0) = Sum_{n>=0} T(n,2)*x^n = lim_{y->0} (B(x,y)-B(x,0))/y, where B(x,0) = 1 + x + x^2 + ... is the g.f. of the first column. We get B_1(x,0) = x*B(x,0)*(B(x,0) - 1)/(1 - x*B(x,0)).
(End)

Extensions

Typo for T(11,3)=15322 corrected by Petros Hadjicostas, Jan 28 2018

A048773 Partial sums of A048697.

Original entry on oeis.org

1, 11, 32, 84, 209, 511, 1240, 3000, 7249, 17507, 42272, 102060, 246401, 594871, 1436152, 3467184, 8370529, 20208251, 48787040, 117782340, 284351729, 686485807, 1657323352, 4001132520, 9659588401, 23320309331, 56300207072, 135920723484, 328141654049
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{2,1},{1,10},35]] (* Harvey P. Dale, Jul 26 2011 *)
    LinearRecurrence[{3, -1, -1},{1, 11, 32},29] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = 2*a(n-1)+a(n-2)+9; a(0)=1, a(1)=11.
a(n) = (((10+(11/2)*sqrt(2))*(1+sqrt(2))^n - (10-(11/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2))-9/2.
From R. J. Mathar, Nov 08 2012: (Start)
G.f.: ( 1+8*x ) / ( (x-1)*(x^2+2*x-1) ).
a(n) = A048739(n)+8*A048739(n-1). (End)
a(n) = 3*a(n-1)-a(n-2)-a(n-3). - Wesley Ivan Hurt, May 21 2021

Extensions

More terms from Harvey P. Dale, Jul 26 2011

A062507 Table by antidiagonals related to partial sums and differences of Pell numbers (A000129).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 24, 17, 12, 8, 4, 1, 0, 58, 41, 29, 20, 12, 5, 1, 0, 140, 99, 70, 49, 32, 17, 6, 1, 0, 338, 239, 169, 119, 81, 49, 23, 7, 1, 0, 816, 577, 408, 288, 200, 130, 72, 30, 8, 1, 0, 1970, 1393, 985, 696, 488, 330, 202, 102
Offset: 0

Views

Author

Henry Bottomley, Jul 09 2001

Keywords

Examples

			Rows start (0,1,0,2,4,10,...), (0,1,1,3,7,17,...), (0,1,2,5,12,29,...) etc.
		

Crossrefs

Rows are effectively A052542, A001333, A000129, A048739, A048776. Columns are effectively A000004, A000012, A001477, A022856.

Formula

T(n, k) =T(n, k-1)+T(n-1, k) =2T(n, k-1)+T(n, k-2)+C(n+k-3, k) for n>2.

A082585 a(1)=1, a(n) = ceiling(r(5)*a(n-1)) where r(5) = (1/2)*(5 + sqrt(29)) is the positive root of X^2 = 5*X + 1.

Original entry on oeis.org

1, 6, 32, 167, 868, 4508, 23409, 121554, 631180, 3277455, 17018456, 88369736, 458867137, 2382705422, 12372394248, 64244676663, 333595777564, 1732223564484, 8994713599985, 46705791564410, 242523671422036
Offset: 1

Views

Author

Benoit Cloitre, May 07 2003

Keywords

Crossrefs

Programs

Formula

For n > 3, a(n) = 6*a(n-1) - 4*a(n-2) - a(n-3); a(n) = floor(t(5)*r(5)^n) where t(5) = (1/10)*(1 + 7/sqrt(29)) is the positive root of 145*X^2 = 29*X + 1.
G.f.: x/((x-1)*(x^2+5*x-1)). - Colin Barker, Jan 27 2013
G.f.: 1/(1/Q(0) + 3*x^3 - 3*x) where Q(k) = 1 + k*(2*x+1) + 8*x - 2*x*(k+1)*(k+5)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013

A128514 Triangle, Pell sequence in every column.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 5, 2, 1, 29, 12, 5, 2, 1, 70, 29, 12, 5, 2, 1, 169, 70, 29, 12, 5, 2, 1, 408, 169, 70, 29, 12, 5, 2, 1, 985, 408, 169, 70, 29, 12, 5, 2, 1, 2378, 985, 408, 169, 70, 29, 12, 5, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 05 2007

Keywords

Comments

Row sums = A048739 starting (1, 3, 8, 20, 49, 119, ...).
Riordan array (1/(1-2x-x^2), x). - Philippe Deléham, Apr 23 2009

Examples

			First few rows of the triangle:
   1;
   2,  1;
   5,  2,  1;
  12,  5,  2,  1;
  29, 12,  5,  2,  1;
  70, 29, 12,  5,  2,  1;
  ...
		

Crossrefs

Formula

A000129 in every column: (1, 2, 5, 12, 29, ...).

A270359 Positive integer averages of first n Pell numbers; Sum{k=0..n-1} A000129(k) / n where n is in A270342.

Original entry on oeis.org

1, 2, 4, 17, 36, 369, 1820, 20808, 47280, 246561, 6919153, 16008300, 1086517900, 5924129729, 13855173264, 982740019940, 30127233316440, 167427203210673, 5203545562472737, 12300752138736600, 913640750713307860, 162500024938034177361
Offset: 1

Views

Author

Altug Alkan, Mar 15 2016

Keywords

Examples

			17 is a term because (0 + 1 + 2 + 5 + 12 + 29 + 70) / 7 = 119 / 7 = 17.
		

Crossrefs

Programs

  • PARI
    a048739(n) = local(w=quadgen(8)); -1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n;
    for(n=1, 1e2, if(a048739(n-1) % (n+1) == 0, print1(a048739(n-1) / (n+1) , ", ")));

A270449 Odd integers n such that the sum of the Pell numbers A000129(0) + ... + A000129(n-1) is divisible by n*(n+1)/2.

Original entry on oeis.org

13, 61, 157, 181, 193, 337, 385, 397, 541, 673, 733, 769, 877, 1153, 1201, 1213, 1453, 1873, 1933, 2017, 2029, 2557, 2593, 2797, 3217, 3313, 3517, 4177, 4273, 4561, 4621, 4657, 5101, 5233, 5437, 5581, 5641, 6337, 6637, 6781, 7057, 7213, 7393, 7481, 7537, 7561, 7933, 8221, 8317
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

Sequence contains the prime numbers most of the time. Nonprime terms of this sequence are 385, 111361, 111841, 155041, 186961 ...

Examples

			13 is a term because (0 + 1 + 2 + 5 + 12 + 29 + 70 + 169 + 408 + 985 + 2378 + 5741 + 13860) / (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13) = 260.
		

Crossrefs

Programs

  • PARI
    a048739(n) = local(w=quadgen(8)); -1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n;
    for(n=1, 1e4, if(a048739(n-1) % ((n+1)*(n+2)/2) == 0 && (n+1) % 2 == 1, print1((n+1), ", ")));
Previous Showing 61-67 of 67 results.