cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A272134 a(n) = n*(15*n^2 - 15*n + 4).

Original entry on oeis.org

0, 4, 68, 282, 736, 1520, 2724, 4438, 6752, 9756, 13540, 18194, 23808, 30472, 38276, 47310, 57664, 69428, 82692, 97546, 114080, 132384, 152548, 174662, 198816, 225100, 253604, 284418, 317632, 353336, 391620, 432574, 476288, 522852, 572356, 624890, 680544
Offset: 0

Views

Author

Vincenzo Librandi, Apr 27 2016

Keywords

Crossrefs

Programs

  • Magma
    [n*(15*n^2-15*n+4): n in [0..40]];
    
  • Mathematica
    Table[n (15 n^2 - 15 n + 4), {n, 0, 40}]
  • PARI
    vector(100, n, n--; n*(15*n^2 - 15*n + 4)) \\ Altug Alkan, Apr 28 2016
    
  • Python
    for n in range(0,10**3):print(n*(15*n**2-15*n+4),end=", ") # Soumil Mandal, Apr 30 2016

Formula

O.g.f.: 2*x*(2 + 26*x + 17*x^2)/(1-x)^4.
E.g.f.: x*(4 + 30*x + 15*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3.
See page 7 in Brent's paper:
a(n) = 2*n^2*A049450(n) - n*(2*n-1)*A049450(n-1).
A272357(n) = 2*n^2*a(n) - n*(2*n-1)*a(n-1).

A294513 Denominators of the partial sums of the reciprocals of twice the pentagonal numbers.

Original entry on oeis.org

2, 5, 120, 1320, 9240, 52360, 52360, 602140, 70450380, 2043061020, 16344488160, 3268897632, 62109055008, 2546471255328, 1157486934240, 54401885909280, 272009429546400, 4805499921986400, 4805499921986400, 283524495397197600, 418536159872053600
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2017

Keywords

Comments

The corresponding numerators are given by A250328(n+1), n >= 0.
Twice the positive pentagonal numbers are A049450(k+1) = (k+1)*(3*k+2), k >= 0.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [3,2].
The limit of the series is V(3,2) = lim_{n -> oo} V(3,2;n) = (3/2)*log(3) - Pi/(2*sqrt(3)) = 0.74101875088505561179... given in A294514.

Examples

			The rationals V(3,2;n), n >= 0, begin: 1/2, 3/5, 77/120, 877/1320, 6271/9240, 36049/52360, 36423/52360, 422137/602140, 49691099/70450380, 1448086909/2043061020, ...
V(3,2;10^4) = 0.7409854223(Maple, 10 digits) to be compared with 0.7410187513 from V(3,2) given in A294514.
Conjecture tests: a(0) = 2 =  A250327(1)/1, 2* a(1) = 5 = 2*A250327(2)/2 = A250327(2), a(2) = 120 = 2*A250327(2)/3 = 2*180/3, ...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193 (with v_m(r) = ((m-r)/m)*V(m,r)).

Crossrefs

Cf. A049450, A250327(n+1), A250328(n+1), A294512.

Programs

  • Mathematica
    Denominator@ Accumulate@ Array[1/(2 PolygonalNumber[5, #]) &, 21] (* Michael De Vlieger, Nov 02 2017 *)

Formula

a(n) = denominator(V(3,2;n)) with V(3,2;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 2)) = Sum_{k=0..n} 1/A049450(k+1) = Sum_{k=0..n} (3/(3*k + 2) - 1/(k+1)).
a(n) = 2*A250327(n+1)/(n+1) [conjecture].

A306249 Number of ways to write n as x*(2x-1) + y*(3y-1) + z*(4z-1) + w*(5w-1), where x,y,z are nonnegative integers and w is 0 or 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 4, 2, 3, 3, 3, 4, 2, 2, 1, 4, 3, 1, 1, 5, 4, 3, 3, 3, 4, 4, 3, 1, 3, 3, 5, 1, 2, 4, 5, 4, 4, 2, 3, 7, 3, 3, 2, 5, 3, 3, 2, 2, 3, 4, 5, 1, 4, 6, 6, 2, 3, 5, 3, 3, 3, 5, 4, 5, 5, 3, 6, 6, 4, 3, 4, 5, 2, 3, 4, 4, 5, 2, 2, 5, 6, 6, 1, 5, 3, 6, 2, 4, 3, 4, 4, 2
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 31 2019

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for n up to 10^6. By Theorem 1.2 of the linked 2017 paper of the author, any nonnegative integer can be written as x*(2x-1) + y*(3y-1) + z*(4z-1) with x,y,z integers.
We have some other similar conjectures. For example, we conjecture that each n = 0,1,2,... can be written as x*(3x-1)/2 + y*(5y-1)/2 + z*(7z-1)/2 + w*(9w-1)/2) (or x*(x-1) + y*(2y-1) + z*(3z-1) + w*(4w-1)) with x,y,z,w nonnegative integers.

Examples

			a(1) = 1 with 1 = 1*(2*1-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(2) = 1 with 2 = 0*(2*0-1) + 1*(3*1-1) + 0*(4*0-1) + 0*(5*0-1).
a(12) = 1 with 12 = 2*(2*2-1) + 1*(3*1-1) + 0*(4*0-1) + 1*(5*1-1).
a(26) = 1 with 26 = 2*(2*2-1) + 1*(3*1-1) + 2*(4*2-1) + 1*(5*1-1).
a(220) = 1 with 220 = 6*(2*6-1) + 7*(3*7-1) + 2*(4*2-1) + 0*(5*0-1).
a(561) = 1 with 561 = 17*(2*17-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(1356) = 1 with 1356 = 23*(2*23-1) + 1*(3*1-1) + 9*(4*9-1) + 1*(5*1-1).
		

Crossrefs

Programs

  • Mathematica
    HexQ[n_]:=HexQ[n]=IntegerQ[Sqrt[8n+1]]&&(n==0||Mod[Sqrt[8n+1]+1,4]==0);
    tab={};Do[r=0;Do[If[HexQ[n-x(5x-1)-y(4y-1)-z(3z-1)],r=r+1],{x,0,Min[1,(Sqrt[20n+1]+1)/10]},{y,0,(Sqrt[16(n-x(5x-1))+1]+1)/8},{z,0,(Sqrt[12(n-x(5x-1)-y(4y-1))+1]+1)/6}];tab=Append[tab,r],{n,0,100}];Print[tab]

A306250 Number of ways to write n as x*(3x+1) + y*(3y-1) + z*(3z+2) + w*(3w-2), where x,y,z,w are nonnegative integers with x*y*z = 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 2, 2, 4, 4, 4, 4, 2, 5, 4, 1, 3, 3, 5, 3, 4, 4, 4, 3, 3, 2, 2, 6, 4, 6, 4, 6, 4, 4, 4, 3, 2, 5, 4, 4, 3, 5, 4, 7, 4, 2, 2, 4, 8, 3, 4, 6, 4, 5, 6, 3, 5, 5, 6, 6, 5, 4, 5, 3, 4, 2, 4, 5, 6, 6, 7, 6, 1, 8
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 01 2019

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
Clearly, a(n) <= A306242(n). We have verified a(n) > 0 for all n = 0..10^6.

Examples

			a(12) = 1 with 12 = 1*(3*1+1) + 0*(3*0-1) + 0*(3*0+2) + 2*(3*2-2).
a(42) = 1 with 42 = 0*(3*0+1) + 1*(3*1-1) + 0*(3*0+2) + 4*(3*4-2).
a(62) = 3 with 62 = 3*(3*3+1) + 3*(3*3-1) + 0*(3*0+2) + 2*(3*2-2)
= 4*(3*4+1) + 2*(3*2-1) + 0*(3*0+2) + 0*(3*0-2) = 4*(3*4+1) + 1*(3*1-1) + 0*(3*0+2) + 2*(3*2-2).
a(99) = 1 with 99 = 2*(3*2+1) + 0*(3*0-1) + 5*(3*5+2) + 0*(3*0-2).
a(118) = 1 with 118 = 0*(3*0+1) + 6*(3*6-1) + 2*(3*2+2) + 0*(3*0-2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]]&&(n==0||Mod[Sqrt[3n+1]+1,3]==0);
    tab={};Do[r=0;Do[If[OctQ[n-x(3x+2)-y(3y+1)-z(3z-1)],r=r+1],{x,0,(Sqrt[3n+1]-1)/3},{y,0,(Sqrt[12(n-x(3x+2))+1]-1)/6},{z,0,If[x>0&&y>0,0,(Sqrt[12(n-x(3x+2)-y(3y+1))+1]+1)/6]}];tab=Append[tab,r],{n,0,100}];Print[tab]

A069741 Let M_n be the n X n matrix M_(i,j)=1/(2^i+2^j), then a(n) is the numerator of det(M_n).

Original entry on oeis.org

1, 1, 1, 49, 2401, 113060689, 260871824431729, 9708455965188246321478801, 361304320362377236050632364626862769, 3511057522394397982450601057907077808699210592028881
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

Comments

a(n) seems always to be a square and 7 seems to follow a rule in a(n) factorization. Maximal k such that 7^k divides a(n) are 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 36, 44, 52, 60, 70, 80, 90, 102, 114, 126, 142, 158, 174, 192... Hence if b(n)=maximum exponent of 7 in factorization of a(n), b(3n+1)=A049450(n); b(3n+2)=A049450(n)+2*n; b(3n+3)=A049450(n)+4n

Crossrefs

Cf. A069743.

Programs

  • PARI
    for(n=1,70,print1(numerator(matdet(matrix(n,n,i,j,1/(2^i+2^j)))),","))

A165410 Hankel transform of the transform of 2^n given by A165409.

Original entry on oeis.org

1, 0, -4, -16, 0, 1024, 16384, 0, -16777216, -1073741824, 0, 17592186044416, 4503599627370496, 0, -1180591620717411303424, -1208925819614629174706176, 0, 5070602400912917605986812821504, 20769187434139310514121985316880384
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Powers of two occurring in this sequence are based on the hexagonal spiral pattern of A049450 and A049451 (see A152749):
.
16--15--14
/ \
17 5---4 13
/ / \ \
18 6 0 3 12
/ / / / /
19 7 1---2 11 26
\ \ / /
20 8---9--10 25
\ /
21--22--23--24
.
The powers, (0,-oo,2,4,-oo,10,14,-oo,24,30,-oo,...) correspond to vertically joining pairs on the (0,4) and (0,2) radial lines, with -oo corresponding to the jump to the next pair.
The Hankel transforms of transforms of r^n behave similarly -- we get 1, 0, -r^2, -r^4, 0, r^10, r^14, ....
Note the Somos-4 property: a(3n) = 4*a(3n-1)*a(3n-3)/e(3n-4). Related to elliptic curve y^2 = 1 - 8x^3 in g.f. of A165409.

Crossrefs

Cf. A165409.

A290168 If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.

Original entry on oeis.org

0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0

Views

Author

Keywords

Comments

Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017

Formula

G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022

A256560 Triangle read by rows, sums of 2 distinct nonzero squares plus sums of 2 distinct nonzero cubes: T(n,k) = n^2 + k^2 + n^3 + k^3, 1 <= k <= n-1.

Original entry on oeis.org

14, 38, 48, 82, 92, 116, 152, 162, 186, 230, 254, 264, 288, 332, 402, 394, 404, 428, 472, 542, 644, 578, 588, 612, 656, 726, 828, 968, 812, 822, 846, 890, 960, 1062, 1202, 1386, 1102, 1112, 1136, 1180, 1250, 1352, 1492, 1676, 1910
Offset: 2

Views

Author

Bob Selcoe, Apr 02 2015

Keywords

Comments

All terms are even.
T(n,1) = A011379(n) + 2.
When n=k+1, T(n,k+1) = A011379(n-1) + A011379(n) = 2n^3 - n^2 + n.

Examples

			Triangle starts T(2,1):
n\k   1    2    3    4    5    6    7     8    9   10
2:   14
3:   38   48
4:   82   92   116
5:   152  162  186  230
6:   254  264  288  332  402
7:   394  404  428  472  542  644
8:   578  588  612  656  726  828  968
9:   812  822  846  890  960  1062 1202 1386
10:  1102 1112 1136 1180 1250 1352 1492 1676 1910
11:  1454 1464 1488 1532 1602 1704 1844 2028 2262 2552
...
The successive terms are: (2^2 + 1^2 + 2^3 + 1^3), (3^2 + 1^2 + 3^3 + 1^3), (3^2 + 2^2 + 3^3 + 2^3), (4^2 + 1^2 + 4^3 + 1^3), (4^2 + 2^2 + 4^3 + 2^3), (4^2 + 3^2 + 4^3 + 3^3), ...
T(7,4) = 472 because 7^2 + 7^3 + 4^2 + 4^3 = 472.
		

Crossrefs

Cf. A055096 (sums of 2 distinct nonzero squares), A256497 (sums of 2 distinct nonzero cubes), A011379, A024670, A004431, A049450.

Formula

a(n) = A055096(n) + A256497(n-1).
T(n,k) = T055096(n,k) + T256547(n-1,k).
T(n,k) = T(n-1,k) + A049450(n).
T(n,k) = T(n,k-1) + A049450(k).
T(n,k) = A011379(n) + A011379(k).
Previous Showing 41-48 of 48 results.