cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 67 results. Next

A049992 a(n) is the number of arithmetic progressions of 3 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 2, 4, 3, 1, 7, 1, 3, 8, 4, 1, 10, 1, 6, 10, 4, 1, 14, 4, 4, 12, 7, 1, 19, 1, 6, 14, 5, 7, 22, 1, 5, 16, 12, 1, 24, 1, 8, 25, 6, 1, 27, 4, 12, 21, 9, 1, 29, 9, 12, 23, 7, 1, 40, 1, 7, 30, 11, 10, 35, 1, 10, 27, 21, 1, 42, 1, 8, 39, 11, 7, 40, 1, 22, 35, 9, 1, 49, 12, 9, 34
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k>=3} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A014405(n) + A023645(n) = A049994(n) + A175676(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 3, 3, 5, 1, 4, 1, 5, 4, 5, 1, 7, 2, 6, 5, 8, 1, 7, 1, 9, 6, 8, 2, 11, 1, 9, 7, 12, 1, 10, 1, 12, 10, 11, 1, 15, 2, 12, 9, 15, 1, 13, 3, 16, 10, 14, 1, 18, 1, 15, 12, 20, 4, 17, 1, 19, 12, 17, 1, 22, 1, 18, 16, 22, 2, 20, 1, 24, 15, 20, 1, 25, 5, 21, 15, 26
Offset: 1

Views

Author

Naohiro Nomoto, Feb 27 2002

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(12) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=12: 1+11, 3+9, and 5+7.
a(13) = 1 because we have only the following arithmetic progressions of odd numbers, strictly increasing with sum n=13: 13.
a(14) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=14: 1+13, 3+11, and 5+9.
a(15) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=15: 15, 3+5+7, and 1+5+9.
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068324(n) - A001227(n) + (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^(m^2)/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
(End)

A332668 Number of strict integer partitions of n without three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 11, 15, 20, 19, 26, 31, 34, 41, 50, 53, 67, 78, 84, 99, 120, 130, 154, 177, 193, 226, 262, 291, 332, 375, 419, 479, 543, 608, 676, 765, 859, 961, 1075, 1202, 1336, 1495, 1672, 1854, 2050, 2301, 2536, 2814, 3142, 3448, 3809
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

Also the number of strict integer partitions of n whose first differences are an anti-run, meaning there are no adjacent equal differences.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)
                        (41)  (51)  (52)   (62)   (63)   (73)
                                    (61)   (71)   (72)   (82)
                                    (421)  (431)  (81)   (91)
                                           (521)  (621)  (532)
                                                         (541)
                                                         (631)
                                                         (721)
		

Crossrefs

Anti-run compositions are counted by A003242.
Normal anti-runs of length n + 1 are counted by A005649.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
The non-strict version is A238424.
The version for permutations is A295370.
Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[Differences[#],{_,x_,x_,_}]&]],{n,0,30}]

A049994 a(n) is the number of arithmetic progressions of 4 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 3, 4, 1, 4, 1, 6, 3, 4, 1, 6, 4, 4, 3, 7, 1, 9, 1, 6, 3, 5, 7, 10, 1, 5, 3, 12, 1, 10, 1, 8, 10, 6, 1, 11, 4, 12, 4, 9, 1, 11, 9, 12, 4, 7, 1, 20, 1, 7, 9, 11, 10, 13, 1, 10, 4, 21, 1, 18, 1, 8, 14, 11, 7, 14, 1, 22, 8, 9, 1, 21, 12, 9, 5, 15, 1, 29, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A175676(n) = A049986(n) + A321014(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A068324 Number of nondecreasing arithmetic progressions of positive odd integers with sum n.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 4, 4, 2, 5, 2, 5, 6, 6, 2, 7, 2, 7, 7, 7, 2, 9, 4, 8, 8, 10, 2, 11, 2, 10, 9, 10, 5, 14, 2, 11, 10, 14, 2, 14, 2, 14, 15, 13, 2, 17, 4, 15, 12, 17, 2, 17, 6, 18, 13, 16, 2, 22, 2, 17, 17, 21, 7, 21, 2, 21, 15, 21, 2, 25, 2, 20, 21, 24, 5, 24, 2, 26, 19, 22, 2, 29, 8
Offset: 1

Views

Author

Naohiro Nomoto, Feb 27 2002

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(6) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=6: 1+5, 3+3, and 1+1+1+1+1+1.
a(7) = 2 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=7: 7 and 1+1+1+1+1+1+1.
a(8) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=8: 1+7, 3+5, and 1+1+1+1+1+1+1+1.
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068322(n) + A001227(n) - (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^m/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
(End)

Extensions

Extended and edited by John W. Layman, Mar 15 2002

A325459 Sum of numbers of nontrivial divisors (greater than 1 and less than k) of k for k = 1..n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 3, 5, 6, 8, 8, 12, 12, 14, 16, 19, 19, 23, 23, 27, 29, 31, 31, 37, 38, 40, 42, 46, 46, 52, 52, 56, 58, 60, 62, 69, 69, 71, 73, 79, 79, 85, 85, 89, 93, 95, 95, 103, 104, 108, 110, 114, 114, 120, 122, 128, 130, 132, 132, 142
Offset: 0

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

Also the number of integer partitions of n that are not hooks but whose augmented differences are hooks (original name). The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and otherwise aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
This sequence counts integer partitions with any number of ones and one part > 1 which appears at least twice. The Heinz numbers of these partitions are given by A325359.

Examples

			The a(4) = 1 through a(10) = 8 partitions:
  (22)  (221)  (33)    (331)    (44)      (333)      (55)
               (222)   (2221)   (2222)    (441)      (3331)
               (2211)  (22111)  (3311)    (22221)    (4411)
                                (22211)   (33111)    (22222)
                                (221111)  (222111)   (222211)
                                          (2211111)  (331111)
                                                     (2221111)
                                                     (22111111)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          numtheory[tau](n)-2+a(n-1))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,y__,1...}/;x>1&&SameQ[x,y]]&]],{n,0,30}]
    (* Second program: *)
    a[n_] := a[n] = If[n<2, 0, DivisorSigma[0, n] - 2 + a[n-1]];
    a /@ Range[0, 100] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
  • Python
    from math import isqrt
    def A325459(n): return 0 if n == 0 else (lambda m: 2*(sum(n//k for k in range(1, m+1))-n)+(1-m)*(1+m))(isqrt(n)) # Chai Wah Wu, Oct 07 2021

Formula

From M. F. Hasler, Oct 11 2019: (Start)
a(n) = A006218(n) - 2*n + 1, in terms of partial sums of number of divisors.
a(n) = Sum_{k=1..n} A070824(k): partial sums of A070824 = number of nontrivial divisors. (End)

Extensions

Name changed at the suggestion of Patrick James Smalley-Wall and Luc Rousseau by Gus Wiseman, Oct 11 2019

A325588 Number of necklace compositions of n with equal circular differences up to sign.

Original entry on oeis.org

1, 2, 3, 4, 4, 7, 5, 9, 8, 10, 8, 17, 9, 14, 15, 22, 12, 23, 14, 31, 23, 25, 19, 48, 25, 35, 36, 56, 33, 59, 43, 86, 64, 74, 76, 136, 95, 127, 138, 219, 178, 245, 249, 372, 370, 445, 506, 747, 730, 907, 1069, 1431, 1544, 1927, 2268, 2981, 3332, 4074, 4896, 6320
Offset: 1

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
The circular differences of a sequence c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).

Examples

			The a(1) = 1 through a(8) = 9 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (111)  (22)    (23)     (24)      (25)       (26)
                    (1111)  (11111)  (33)      (34)       (35)
                                     (222)     (1111111)  (44)
                                     (1212)               (1232)
                                     (111111)             (1313)
                                                          (2222)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&SameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,15}]
  • PARI
    step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
    w(n,s)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==s), t=0, m=1); while(R, R=step(R,n,s); m++; t+=sumdiv(n, d, R[d,k]*d*eulerphi(n/d))/m ); t/n)}
    a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 24 2019

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 24 2019

A333195 Numbers with three consecutive prime indices in arithmetic progression.

Original entry on oeis.org

8, 16, 24, 27, 30, 32, 40, 48, 54, 56, 60, 64, 72, 80, 81, 88, 96, 104, 105, 108, 110, 112, 120, 125, 128, 135, 136, 144, 150, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 210, 216, 220, 224, 232, 238, 240, 243, 248, 250, 256, 264, 270, 272, 273, 280, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2020

Keywords

Comments

Also numbers whose first differences of prime indices do not form an anti-run, meaning there are adjacent equal differences.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    8: {1,1,1}          105: {2,3,4}
   16: {1,1,1,1}        108: {1,1,2,2,2}
   24: {1,1,1,2}        110: {1,3,5}
   27: {2,2,2}          112: {1,1,1,1,4}
   30: {1,2,3}          120: {1,1,1,2,3}
   32: {1,1,1,1,1}      125: {3,3,3}
   40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
   48: {1,1,1,1,2}      135: {2,2,2,3}
   54: {1,2,2,2}        136: {1,1,1,7}
   56: {1,1,1,4}        144: {1,1,1,1,2,2}
   60: {1,1,2,3}        150: {1,2,3,3}
   64: {1,1,1,1,1,1}    152: {1,1,1,8}
   72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
   80: {1,1,1,1,3}      162: {1,2,2,2,2}
   81: {2,2,2,2}        168: {1,1,1,2,4}
   88: {1,1,1,5}        176: {1,1,1,1,5}
   96: {1,1,1,1,1,2}    184: {1,1,1,9}
  104: {1,1,1,6}        189: {2,2,2,4}
		

Crossrefs

Anti-run compositions are counted by A003242.
Normal anti-runs of length n + 1 are counted by A005649.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
These are the Heinz numbers of the partitions *not* counted by A238424.
Permutations avoiding triples in arithmetic progression are A295370.
Strict partitions avoiding triples in arithmetic progression are A332668.
Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MatchQ[Differences[primeMS[#]],{_,x_,x_,_}]&]

A049993 a(n) is the number of arithmetic progressions of 3 or more positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 7, 9, 13, 16, 17, 24, 25, 28, 36, 40, 41, 51, 52, 58, 68, 72, 73, 87, 91, 95, 107, 114, 115, 134, 135, 141, 155, 160, 167, 189, 190, 195, 211, 223, 224, 248, 249, 257, 282, 288, 289, 316, 320, 332, 353, 362, 363, 392, 401, 413, 436, 443, 444, 484, 485, 492, 522, 533, 543, 578
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049992(k).
G.f.: (g.f. of A049992)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A325333 Number of integer partitions of n whose multiplicities all appear the same number of times.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 19, 23, 32, 39, 50, 63, 82, 96, 125, 152, 186, 226, 271, 326, 392, 473, 552, 663, 771, 918, 1065, 1261, 1448, 1710, 1953, 2283, 2608, 3062, 3455, 4013, 4552, 5271, 5974, 6884, 7774, 8937, 10065, 11570, 12953, 14838, 16710, 18979
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (211)   (221)    (51)      (61)
                        (1111)  (311)    (222)     (322)
                                (2111)   (321)     (331)
                                (11111)  (411)     (421)
                                         (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (4111)
                                         (111111)  (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
For example, the partition (4,3,3,3,2,2,2,1) has multiplicities (1,3,3,1), and since both multiplicities 1 and 3 appear twice, (4,3,3,3,2,2,2,1) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
Previous Showing 51-60 of 67 results. Next