cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A321811 Sum of 7th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 2188, 1, 78126, 2188, 823544, 1, 4785157, 78126, 19487172, 2188, 62748518, 823544, 170939688, 1, 410338674, 4785157, 893871740, 78126, 1801914272, 19487172, 3404825448, 2188, 6103593751, 62748518, 10465138360, 823544, 17249876310
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=7 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^7 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321811(n)=sigma(n>>valuation(n,2),7), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321811(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),7)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013955(A000265(n)) = sigma_7(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/16 = Pi^8/151200 = 0.0627548... . (End)

A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.

Original entry on oeis.org

1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
a(n) = (A138503(n) + 3*A321543(n) + 2*A002129(n)) / 6. - Amiram Eldar, Jan 04 2025

A321812 Sum of 8th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=8 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013956(A000265(n)) = sigma_8(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^8*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/18 = 0.0556671... . (End)

A321813 Sum of 9th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=9 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)

A321814 Sum of 10th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 59050, 1, 9765626, 59050, 282475250, 1, 3486843451, 9765626, 25937424602, 59050, 137858491850, 282475250, 576660215300, 1, 2015993900450, 3486843451, 6131066257802, 9765626, 16680163512500, 25937424602, 41426511213650, 59050
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=10 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^10 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321814(n)=sigma(n>>valuation(n,2),10), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321814(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),10)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013958(A000265(n)) = sigma_10(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^10*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/22 = 0.045477... . (End)

A321815 Sum of 11th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • GAP
    List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)

A347161 Sum of squares of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 35, 1, 1, 10, 1, 26, 10, 1, 1, 10, 26, 1, 10, 1, 1, 35, 1, 1, 10, 1, 26, 10, 1, 1, 10, 26, 50, 10, 1, 1, 35, 1, 1, 59, 1, 26, 10, 1, 1, 10, 75, 1, 10, 1, 1, 35, 1, 50, 10, 1, 26
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^2 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(2 k - 1)^2 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = my(r=sqrt(n)); sumdiv(n, d, if ((d%2) && (dMichel Marcus, Aug 21 2021

Formula

G.f.: Sum_{k>=1} (2*k - 1)^2 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

A347173 Sum of squares of odd divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 26, 1, 10, 1, 1, 35, 1, 1, 10, 1, 26, 10, 1, 1, 10, 26, 1, 10, 1, 1, 35, 1, 1, 10, 50, 26, 10, 1, 1, 10, 26, 50, 10, 1, 1, 35, 1, 1, 59, 1, 26, 10, 1, 1, 10, 75, 1, 10, 1, 1, 35, 1, 50, 10, 1, 26
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			a(18) = 10 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the squares of 1 and 3 then add them i.e., a(18) = 1^2 + 3^2 = 10. - _David A. Corneth_, Feb 24 2024
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^2 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(2 k - 1)^2 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^2)); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {
    	my(s = sqrtint(n), res);
    	n>>=valuation(n, 2);
    	d = divisors(n);
    	for(i = 1, #d,
    		if(d[i] <= s,
    			res += d[i]^2
    		,
    			return(res)
    		)
    	); res
    } \\ David A. Corneth, Feb 24 2024

Formula

G.f.: Sum_{k>=1} (2*k - 1)^2 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).

A076598 Sum of squares of divisors d of n such that d or n/d is odd.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 65, 91, 130, 122, 170, 170, 250, 260, 257, 290, 455, 362, 442, 500, 610, 530, 650, 651, 850, 820, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1547, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2366, 2650, 2210, 2570, 2451, 3255
Offset: 1

Views

Author

Vladeta Jovovic, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 4^e+1 ; f[p_, e_] := (p^(2*e+2)-1)/(p^2-1) ; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Aug 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d % 2) || (n/d % 2), d^2)); \\ Michel Marcus, Oct 30 2022

Formula

Multiplicative with a(2^e) = 4^e+1, a(p^e) = (p^(2*e+2)-1)/(p^2-1) for an odd prime p.
G.f.: Sum_{m>0} m^2*x^m*(1+2*x^m+3*x^(2*m))/(1+x^(2*m))/(1+x^m).
More generally, if b(n, k) is sum of k-th powers of divisors d of n such that d or n/d is odd then b(n, k) = sigma_k(n)-2^k*sigma_k(n/4) if n mod 4=0, otherwise b(n, k) = sigma_k(n).
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1+x^m+x^(2*m)-(2^k-1)*x^(3*m))/(1-x^(4*m)). b(n, k) is multiplicative and b(2^e, k) = 2^(k*e)+1, b(p^e, k) = (p^(k*e+k)-1)/(p^k-1) for an odd prime p.
a(n) = sigma_2(n)-4*sigma_2(n/4) if n mod 4=0, otherwise a(n) = sigma_2(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 5*zeta(3)/16 = 0.375642... . - Amiram Eldar, Oct 30 2022

A363590 a(n) = Sum_{d|n, d odd} d^d.

Original entry on oeis.org

1, 1, 28, 1, 3126, 28, 823544, 1, 387420517, 3126, 285311670612, 28, 302875106592254, 823544, 437893890380862528, 1, 827240261886336764178, 387420517, 1978419655660313589123980, 3126, 5842587018385982521381947992, 285311670612
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2023

Keywords

Comments

Not multiplicative: a(3)*a(5) != a(15), for example.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Jul 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*d^d);
    
  • Python
    from sympy import divisors
    def A363590(n): return sum(d**d for d in divisors(n>>(~n & n-1).bit_length(),generator=True)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: Sum_{k>0} ((2*k-1) * x)^(2*k-1) / (1 - x^(2*k-1)).
a(2^n) = 1.
Previous Showing 21-30 of 33 results. Next