cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A352049 Sum of the cubes of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 8, 27, 64, 125, 224, 343, 512, 756, 1008, 1331, 1792, 2197, 2752, 3527, 4096, 4913, 6056, 6859, 8064, 9631, 10656, 12167, 14336, 15750, 17584, 20439, 22016, 24389, 28224, 29791, 32768, 37295, 39312, 43343, 48448, 50653, 54880, 61543, 64512, 68921, 77056, 79507
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^3 * Sum_{d|10, d<10, d odd} 1 / d^3 = 10^3 * (1/1^3 + 1/5^3) = 1008.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), this sequence (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^3, d = select(`<`,numtheory:-divisors(m),n))
    end proc:
    map(f, [$1..50]); # Robert Israel, Apr 03 2023
  • Mathematica
    A352049[n_]:=DivisorSum[n,1/#^3&,#A352049,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-3, n/2^IntegerExponent[n, 2]] * n^3 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^3 * sigma(n >> valuation(n, 2), -3) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^3 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^3 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051000(n) * A006519(n)^3 - A000035(n).
Sum_{k=1..n} a(k) = c * n^4 / 4, where c = 15*zeta(4)/16 = 1.01467803... (A300707). (End)

A321816 Sum of 12th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 531442, 1, 244140626, 531442, 13841287202, 1, 282430067923, 244140626, 3138428376722, 531442, 23298085122482, 13841287202, 129746582562692, 1, 582622237229762, 282430067923, 2213314919066162, 244140626, 7355841353205284, 3138428376722
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=12 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321815 (analog for 2nd .. 11th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^12&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321816(n)=sigma(n>>valuation(n,2),12), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321816(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),12)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013960(A000265(n)) = sigma_12(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^12*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = zeta(13)/26 = 0.0384662... . (End)

A321811 Sum of 7th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 2188, 1, 78126, 2188, 823544, 1, 4785157, 78126, 19487172, 2188, 62748518, 823544, 170939688, 1, 410338674, 4785157, 893871740, 78126, 1801914272, 19487172, 3404825448, 2188, 6103593751, 62748518, 10465138360, 823544, 17249876310
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=7 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^7 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321811(n)=sigma(n>>valuation(n,2),7), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321811(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),7)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013955(A000265(n)) = sigma_7(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/16 = Pi^8/151200 = 0.0627548... . (End)

A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.

Original entry on oeis.org

1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
a(n) = (A138503(n) + 3*A321543(n) + 2*A002129(n)) / 6. - Amiram Eldar, Jan 04 2025

A321812 Sum of 8th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=8 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013956(A000265(n)) = sigma_8(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^8*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/18 = 0.0556671... . (End)

A321813 Sum of 9th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=9 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)

A321814 Sum of 10th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 59050, 1, 9765626, 59050, 282475250, 1, 3486843451, 9765626, 25937424602, 59050, 137858491850, 282475250, 576660215300, 1, 2015993900450, 3486843451, 6131066257802, 9765626, 16680163512500, 25937424602, 41426511213650, 59050
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=10 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^10 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321814(n)=sigma(n>>valuation(n,2),10), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321814(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),10)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013958(A000265(n)) = sigma_10(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^10*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/22 = 0.045477... . (End)

A347162 Sum of cubes of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    scod[n_]:=Total[Select[Divisors[n],#Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = my(r=sqrt(n)); sumdiv(n, d, if ((d%2) && (dMichel Marcus, Aug 21 2021

Formula

G.f.: Sum_{k>=1} (2*k - 1)^3 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

A321815 Sum of 11th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • GAP
    List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)

A347174 Sum of cubes of odd divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 344, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			a(18) = 28 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the cubes of 1 and 3 then add them i.e., a(18) = 1^3 + 3^3 = 28. - _David A. Corneth_, Feb 24 2024
		

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^3)); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {
    	my(s = sqrtint(n), res);
    	n>>=valuation(n, 2);
    	d = divisors(n);
    	for(i = 1, #d,
    		if(d[i] <= s,
    			res += d[i]^3
    		,
    			return(res)
    		)
    	); res
    } \\ David A. Corneth, Feb 24 2024

Formula

G.f.: Sum_{k>=1} (2*k - 1)^3 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).
Previous Showing 11-20 of 22 results. Next