A352049 Sum of the cubes of the divisor complements of the odd proper divisors of n.
0, 8, 27, 64, 125, 224, 343, 512, 756, 1008, 1331, 1792, 2197, 2752, 3527, 4096, 4913, 6056, 6859, 8064, 9631, 10656, 12167, 14336, 15750, 17584, 20439, 22016, 24389, 28224, 29791, 32768, 37295, 39312, 43343, 48448, 50653, 54880, 61543, 64512, 68921, 77056, 79507
Offset: 1
Examples
a(10) = 10^3 * Sum_{d|10, d<10, d odd} 1 / d^3 = 10^3 * (1/1^3 + 1/5^3) = 1008.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,d; m:= n/2^padic:-ordp(n,2); add((n/d)^3, d = select(`<`,numtheory:-divisors(m),n)) end proc: map(f, [$1..50]); # Robert Israel, Apr 03 2023
-
Mathematica
A352049[n_]:=DivisorSum[n,1/#^3&,#
A352049,50] (* Paolo Xausa, Aug 09 2023 *) a[n_] := DivisorSigma[-3, n/2^IntegerExponent[n, 2]] * n^3 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^3 * sigma(n >> valuation(n, 2), -3) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^3 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^3 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^4 / 4, where c = 15*zeta(4)/16 = 1.01467803... (A300707). (End)
A321816 Sum of 12th powers of odd divisors of n.
1, 1, 531442, 1, 244140626, 531442, 13841287202, 1, 282430067923, 244140626, 3138428376722, 531442, 23298085122482, 13841287202, 129746582562692, 1, 582622237229762, 282430067923, 2213314919066162, 244140626, 7355841353205284, 3138428376722
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^12&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321816(n)=sigma(n>>valuation(n,2),12), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321816(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),12)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013960(A000265(n)) = sigma_12(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^12*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = zeta(13)/26 = 0.0384662... . (End)
A321811 Sum of 7th powers of odd divisors of n.
1, 1, 2188, 1, 78126, 2188, 823544, 1, 4785157, 78126, 19487172, 2188, 62748518, 823544, 170939688, 1, 410338674, 4785157, 893871740, 78126, 1801914272, 19487172, 3404825448, 2188, 6103593751, 62748518, 10465138360, 823544, 17249876310
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^7 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321811(n)=sigma(n>>valuation(n,2),7), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321811(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),7)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013955(A000265(n)) = sigma_7(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/16 = Pi^8/151200 = 0.0627548... . (End)
A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.
1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
-
Mathematica
nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]] Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
-
PARI
a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025
A321812 Sum of 8th powers of odd divisors of n.
1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013956(A000265(n)) = sigma_8(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^8*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/18 = 0.0556671... . (End)
A321813 Sum of 9th powers of odd divisors of n.
1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)
A321814 Sum of 10th powers of odd divisors of n.
1, 1, 59050, 1, 9765626, 59050, 282475250, 1, 3486843451, 9765626, 25937424602, 59050, 137858491850, 282475250, 576660215300, 1, 2015993900450, 3486843451, 6131066257802, 9765626, 16680163512500, 25937424602, 41426511213650, 59050
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^10 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321814(n)=sigma(n>>valuation(n,2),10), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321814(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),10)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013958(A000265(n)) = sigma_10(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^10*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/22 = 0.045477... . (End)
A347162 Sum of cubes of odd divisors of n that are < sqrt(n).
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[DivisorSum[n, #^3 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 75}] nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest scod[n_]:=Total[Select[Divisors[n],#
Harvey P. Dale, Jan 07 2022 *) -
PARI
a(n) = my(r=sqrt(n)); sumdiv(n, d, if ((d%2) && (d
Michel Marcus, Aug 21 2021
Formula
G.f.: Sum_{k>=1} (2*k - 1)^3 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).
A321815 Sum of 11th powers of odd divisors of n.
1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
GAP
List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
-
Mathematica
a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
-
PARI
apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)
A347174 Sum of cubes of odd divisors of n that are <= sqrt(n).
1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 344, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1
Examples
a(18) = 28 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the cubes of 1 and 3 then add them i.e., a(18) = 1^3 + 3^3 = 28. - _David A. Corneth_, Feb 24 2024
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}] nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^3)); \\ Michel Marcus, Aug 22 2021
-
PARI
a(n) = { my(s = sqrtint(n), res); n>>=valuation(n, 2); d = divisors(n); for(i = 1, #d, if(d[i] <= s, res += d[i]^3 , return(res) ) ); res } \\ David A. Corneth, Feb 24 2024
Formula
G.f.: Sum_{k>=1} (2*k - 1)^3 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).