cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A261144 Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1

Views

Author

Jean-François Alcover, Nov 26 2015

Keywords

Comments

If we define a triangle whose n-th row consists of all squarefree numbers whose prime factors are all less than prime(k), we get this same triangle except starting with a row {1}, with offset 1. - Gus Wiseman, Aug 24 2021

Examples

			Triangle begins:
1, 2;                        squarefree and 2-smooth
1, 2, 3, 6;                  squarefree and 3-smooth
1, 2, 3, 5, 6, 10, 15, 30;
1, 2, 3, 5, 6,  7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210;
...
		

Crossrefs

Cf. A000079 (2-smooth), A003586 (3-smooth), A051037 (5-smooth), A002473 (7-smooth), A018336 (7-smooth & squarefree), A051038 (11-smooth), A087005 (11-smooth & squarefree), A080197 (13-smooth), A087006 (13-smooth & squarefree), A087007 (17-smooth & squarefree), A087008 (19-smooth & squarefree).
Row lengths are A000079.
Rightmost terms (or column k = 2^n) are A002110.
Rows are partial unions of rows of A019565.
Row n is A027750(A002110(n)), i.e., divisors of primorials.
Row sums are A054640.
Column k = 2^n-1 is A070826.
Multiplying row n by prime(n+1) gives A339195, row sums A339360.
A005117 lists squarefree numbers.
A056239 adds up prime indices, row sums of A112798.
A072047 counts prime factors of squarefree numbers.
A246867 groups squarefree numbers by Heinz weight, row sums A147655.
A329631 lists prime indices of squarefree numbers, sums A319246.
A339116 groups squarefree semiprimes by greater factor, sums A339194.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1],
          sort(map(x-> [x, x*ithprime(n)][], b(n-1))))
        end:
    T:= n-> b(n)[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten

Formula

T(n-1,k) = A339195(n,k)/prime(n). - Gus Wiseman, Aug 24 2021

A084034 Numbers which are a product of repeated-digit numbers A010785.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 111, 112, 120, 121, 125, 126, 128
Offset: 1

Views

Author

Amarnath Murthy, May 26 2003

Keywords

Comments

Numbers which can be written as a*b*c*... where a, b, c are numbers whose decimal expansions are repetitions of a single digit.
Superset of A051038. The first numbers in this sequence but not in A051038 are 111, 222, 333, 444, 555. - R. J. Mathar, Sep 17 2008
From David A. Corneth, Aug 03 2017: (Start)
Closed under multiplication.
Multiples of 1-digit primes and numbers of the form (10^n - 1) / 9. (End)

Examples

			99 is a member since 99 = 3*33.
9768 is a member since 9768= 2*22*222.
111*2*33*44 = 322344 is a member.
		

Crossrefs

A002473 gives products of single-digit numbers.

Programs

  • Maple
    isA010786 := proc(n) if nops(convert(convert(n,base,10),set)) = 1 then true; else false ; fi; end: isA084034 := proc(n,a010785) local d ; if n = 1 then RETURN(true) ; fi; for d in ( numtheory[divisors](n) minus{1} ) do if d in a010785 then if isA084034(n/d,a010785) then RETURN(true) ; fi; fi; od: RETURN(false) ; end: nmax := 1000: a010785 := [] : for k from 1 to nmax do if isA010786(k) then a010785 := [op(a010785),k] ; fi; od: for n from 1 to nmax do if isA084034(n,a010785) then printf("%d,",n) ; fi; end: # R. J. Mathar, Sep 17 2008

Extensions

Corrected and extended by David Wasserman, Dec 09 2004
Corrected data, offset changed to 1 by David A. Corneth, Aug 03 2017
Edited by N. J. A. Sloane, Jul 02 2017 and Oct 10 2018

A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.

Original entry on oeis.org

2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 32340, 34650, 36960, 41580, 46200, 48510, 50820, 55440, 57750, 62370, 64680, 69300, 73920, 76230, 80850, 83160, 92400, 97020, 101640, 103950, 110880, 113190, 115500, 124740, 127050
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a
    Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* Harvey P. Dale, Oct 04 2020 *)
  • Python
    from sympy import integer_log, prevprime
    def A147572(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return 2310*bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

a(n) = 2310 * A051038(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Nov 12 2020

Extensions

More terms from Amiram Eldar, Mar 10 2020

A125624 Array read by antidiagonals: n-th row contains the positive integers with their largest prime factor equal to the n-th prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 7, 10, 9, 16, 11, 14, 15, 12, 32, 13, 22, 21, 20, 18, 64, 17, 26, 33, 28, 25, 24, 128, 19, 34, 39, 44, 35, 30, 27, 256, 23, 38, 51, 52, 55, 42, 40, 36, 512, 29, 46, 57, 68, 65, 66, 49, 45, 48, 1024, 31, 58, 69, 76, 85, 78, 77, 56, 50, 54, 2048, 37, 62, 87, 92
Offset: 1

Views

Author

Leroy Quet, Jan 27 2007

Keywords

Comments

This sequence is a permutation of the integers >= 2.
Since the table has been entered by rising instead of falling antidiagonals, the sequence represents the transpose, with columns instead of rows: cf. the "table" link, section "infinite square array". - M. F. Hasler, Oct 22 2019
Start with table headed by primes in the first row, then list beneath each prime(k) the ordered prime(k)-smooth numbers. Read the table by falling antidiagonals to get the terms of this sequence. - David James Sycamore, Jun 23 2024

Examples

			Array begins: (rows here appear as columns in the "table" display of the sequence)
   2,  4,  8, 16, 32, 64, 128, 256, 512, ... (A000079)
   3,  6,  9, 12, 18, 24,  27,  36,  48, ... (A065119)
   5, 10, 15, 20, 25, 30,  40,  45,  50, ... (A080193)
   7, 14, 21, 28, 35, 42,  49,  56,  63, ... (A080194)
  11, 22, 33, 44, 55, 66,  77,  88,  99, ... (A080195)
  13, 26, 39, 52, 65, 78,  91, 104, 117, ... (A080196)
The 3rd row, for example, contains the positive integers where the 3rd prime, 5, is the largest prime divisor. That is, each integer in this row is divisible by 5 and may be divisible by 2 or 3 as well, but none of the integers in this row are divisible by primes larger than 5. (So for example, 35 = 5*7 is excluded from the 3rd row.)
		

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[ -1, 1]];f[n_, m_] := f[n, m] = Block[{k},k = If[m == 1, Prime[n], f[n, m - 1] + 1];While[lpf[k] != Prime[n], k++ ];k];Table[f[ d - m + 1, m], {d, 12}, {m, d}] // Flatten (* Ray Chandler, Feb 09 2007 *)
  • PARI
    T=List(); r=c=1; for(n=1,99, #TT[r][1], ); print1(T[r][c]","); r-- && c++ || r=c+c=1) \\ M. F. Hasler, Oct 22 2019

Extensions

Extended by Ray Chandler, Feb 09 2007

A080684 Number of 13-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 35, 36, 37, 38, 38, 39, 39, 40, 41, 42, 42, 42, 42, 43, 43, 43, 44, 45, 46, 47, 47, 47, 47, 48, 48, 49
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 13. Input pn=13 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<14,1,0],{n,80}]] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
    
  • Python
    from sympy import prevprime, integer_log
    def A080684(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,13) # Chai Wah Wu, Oct 22 2024

A071523 Number of 11-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 37, 38, 38, 38, 38, 39, 39, 39, 40, 41, 41, 42, 42, 42, 42, 43, 43, 44
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

An 11-smooth number is a number of the form 2^x*3^y*5^z*7^u*11^v (x,y,z,u,v) >= 0.

Crossrefs

Cf. A051038.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), this sequence (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<=11,1,0],{n,120}]] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=sum(k=1,n,(k<4) || 13>vecmax(factor(k)~[1,]))

Formula

a(n) = Card{ k | A051038(k) <= n }.

A107352 Number of positive integers <= 10^n that are divisible by no prime exceeding 11.

Original entry on oeis.org

1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, 20193, 30524, 44696, 63694, 88658, 120895, 161885, 213294, 276997, 355082, 449849, 563834, 699826, 860861, 1050260, 1271598, 1528765, 1825937, 2167611, 2558606, 3004075, 3509523
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2005

Keywords

Comments

Lehmer quotes A. E. Western as computing a(5) = 1197, a(8) = 7838 and a(10) = 20193.
Number of integers of the form 2^a*3^b*5^c*7^d*11^e <= 10^n.

Crossrefs

Row 5 of A253635.

Programs

  • Mathematica
    fQ[n_] := FactorInteger[n][[ -1, 1]] < 13; c = 1; k = 1; Do[ While[k <= 10^n, If[ fQ[k], c++ ]; k++ ]; Print[c], {n, 0, 9}] (* Or *)
    n = 32; t = Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, Log[2, 10^n]}, {b, 0, Log[3, 10^n]}]], # <= 10^n &], {c, 0, Log[5, 10^n]}]], # <= 10^n &], {d, 0, Log[7, 10^n]}]], # <= 10^n &], {e, 0, Log[11, 10^n]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 32}] (* Robert G. Wilson v, May 24 2005 *)
  • Python
    from sympy import integer_log, prevprime
    def A107352(n):
        def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
        return g(10**n,11) # Chai Wah Wu, Oct 22 2024

Formula

Does a(n)/(a(n-1) - a(n-2)) tend to c*n + d for large n where c ~= 0.20 and d ~= 1.37? - David A. Corneth, Nov 14 2019

Extensions

More terms from Robert G. Wilson v and Don Reble, May 26 2005

A290365 Numbers that cannot be written as a difference of 3-smooth numbers (A003586).

Original entry on oeis.org

41, 43, 59, 67, 82, 83, 85, 86, 89, 91, 97, 103, 109, 113, 118, 121, 123, 129, 131, 133, 134, 137, 145, 149, 151, 155, 157, 163, 164, 166, 167, 169, 170, 172, 173, 177, 178, 181, 182, 185, 187, 193, 194, 197, 199, 201, 203, 205, 206, 209, 218, 221, 223, 226
Offset: 1

Views

Author

Michel Marcus, Aug 03 2017

Keywords

Comments

Called ndh-numbers in the da Silva et al. link.
From Jon E. Schoenfield, Aug 19 2017: (Start)
If (following da Silva et al.) we refer to these numbers as "ndh-numbers" (meaning that they cannot be expressed as the difference of two "harmonic numbers" [which, in this context, are 3-smooth numbers]), we could refer to the sequence of positive integers that are not in this sequence as "dh-numbers", and say that the set of positive integers <= 100 includes the 11 ndh-numbers listed at the link (i.e., a(1) = 41 through a(11) = 97) and 100 - 11 = 89 dh-numbers. Each of the 89 dh-numbers <= 100 can be written as the difference of two 3-smooth numbers using no 3-smooth number larger than 162 (which is required to obtain the difference 98 = 162 - 64). The table below shows results from checking every difference between two 3-smooth numbers < 10^50 (which seems very nearly certain to capture all differences in [1,10^10]):
.
Number Number
of ndh- of dh-
numbers numbers
in in Largest 3-smooth number required
k [1,10^k] [1,10^k] to obtain a dh-number in [1,10^k]
= ======== ======== ==================================
1 0 10 12 = 3 + 9
2 11 89 162 = 64 + 98
3 522 478 13122 = 12288 + 834
4 8433 1567 531441 = 524288 + 7153
5 96065 3935 6377292 = 6291456 + 85836
6 991699 8301 68024448 = 67108864 + 915584
7 9984463 15537 688747536 = 679477248 + 9270288
8 99973546 26454 7346640384 = 7247757312 + 98883072
.
A101082 gives the numbers that cannot be written as a difference of 2-smooth numbers (i.e., the powers of 2: A000079).
Numbers that cannot be written as a difference of 5-smooth numbers (A051037) appear to be 281, 289, 353, 413, 421, 439, 443, 457, 469, 493, 541, 562, 563, 578, 581, 583, 641, 653, 661, 677, 683, 691, 701, 706, 707, 731, 733, 737, 751, 761, 769, 779, 787, 793, 803, 811, 817, 823, 826, 827, 829, 841, 842, 843, 853, 857, 867, 877, 878, 881, 883, 886, ...
Numbers that cannot be written as a difference of 7-smooth numbers (A002473) appear to be 1849, 2309, 2411, 2483, 2507, 2531, 2629, 2711, 2753, 2843, 2851, 2921, 2941, 3139, 3161, 3167, 3181, 3217, 3229, 3251, 3287, 3289, 3293, 3323, 3379, 3481, 3487, 3541, 3601, 3623, 3653, 3697, 3698, 3709, 3737, 3739, 3803, 3827, 3859, 3877, 3901, 3923, 3947, ...
Numbers that cannot be written as a difference of 11-smooth numbers (A051038) appear to be 9007, 10091, 10531, 10831, 11801, 12197, 12431, 12833, 12941, 13393, 13501, 13619, 13679, 13751, 13907, 13939, 14219, 14423, 14737, 14851, 14893, 15217, 15641, 15767, 15773, 15803, 15959, 16019, 16201, 16241, 16393, 16397, 16417, 16441, 16517, 16559, 16579, ...
(End)

Crossrefs

Programs

  • Mathematica
    terms = 54;
    A3586 = Select[Range[3000], FactorInteger[#][[-1, 1]] <= 3&];
    dd = Union[#[[2]] - #[[1]]& /@ Subsets[A3586, {2}]];
    Complement[Range[u[[-1]]], dd][[1 ;; terms]] (* Jean-François Alcover, Sep 28 2018 *)

Extensions

a(12)-a(54) from Jon E. Schoenfield, Aug 18 2017

A308247 a(n) is the least integer not the difference of two prime(n)-smooth numbers.

Original entry on oeis.org

5, 41, 281, 1849, 9007, 35803
Offset: 1

Views

Author

Keywords

Comments

The known terms have been found by exhaustive search and then proved not to be the difference of prime(n)-smooth numbers using assertions such as +- a(n) !== (modulo m) meaning that no element of the subgroup of Z/m generated by a,b,... added to a(n) is congruent modulo m with an element of the subgroup generated by . For example: <2> +- 41 !== <3> (mod 91) and the fact that 41+1 is not 3-smooth is enough to prove that 41 is not the difference of 3-smooth numbers; <2> + 281 !== <3,5> (mod 13981), <2> - 281 !== <3,5> (mod 76627) and <3> +- 281 !== <2,5> along with the fact that 281+1 is not 5-smooth is enough to show that 281 is not the difference of 5-smooth numbers. The proofs get exponentially harder as n increases. For example, <2, 11> + 9007 !== <3, 5, 7> (mod 308859288230831), or <2,5,7> + 35803 !== <3,11,13> (mod 2219897250633559197203).
The next few terms are conjectured to be 158857, 681179, 2516509, 10772123, 51292187, 186323681; if they were not, they would provide examples of ABC-triples with quality greater than 2.

Examples

			We see that 1 = 2-1, 2 = 4-2, 3 = 4-1, and 4 = 8-4. It is easy to see that 5 is not the difference of two powers of 2, so a(1) = 5. In the same way we can see that all the integers up to 40 are the difference of 3-smooth numbers, but as shown above 41 is not, so a(2)=41.
		

Crossrefs

P-smooth_numbers: A000079, A003586, A051037, A002473, A051038, ...
a(i) is the first term in each of A101082, A290365, A308456, A326318, A326319, A326320.

A326319 Numbers that cannot be written as a difference of 11-smooth numbers.

Original entry on oeis.org

9007, 10091, 10531, 10831, 11801, 12197, 12431, 12833, 12941, 13393, 13501, 13619, 13679, 13751, 13907, 13939, 14219, 14423, 14737, 14851, 14893, 15217, 15641, 15767, 15773, 15803, 15959, 16019, 16201, 16241, 16393, 16397, 16417, 16441, 16517, 16559
Offset: 1

Views

Author

Keywords

Comments

Terms were found by generating in sequential order the 11-smooth numbers up to some limit and collecting the differences. The first 100 candidates k were then proved to be correct by showing that each of the following 15 congruences holds:
<2> +- k !== <3, 5, 7, 11> mod 563213996185633,
<3> +- k !== <2, 5, 7, 11> mod 194191394486113583,
<2, 3> +- k !== <5, 7, 11> mod 1762314762258271,
<5> +- k !== <2, 3, 7, 11> mod 220836983154619,
<2, 5> +- k !== <3, 7, 11> mod 2128827364461031,
<3, 5> +- k !== <2, 7, 11> mod 3521575252831519,
<7, 11> +- k !== <2, 3, 5> mod 497846284658749,
<7> +- k !== <2, 3, 5, 11> mod 5489574535421899,
<2, 7> +- k !== <3, 5, 11> mod 6600281111334703,
<3, 7> +- k !== <2, 5, 11> mod 834486158701066937,
<5, 11> +- k !== <2, 3, 7> mod 239190476358328703,
<5, 7> +- k !== <2, 3, 11> mod 3288443009987083,
<3, 11> +- k !== <2, 5, 7> mod 14071029652900961,
<2, 11> +- k !== <3, 5, 7> mod 1762314762258271,
<11> +- k !== <2, 3, 5, 7> mod 411934385702047,
where represents any element in the subgroup generated by a,b,... of the multiplicative subgroup modulo m. For a discussion iof this method of proof see A308247.

Examples

			9007 = A308247(5) cannot be written as the difference of 11-smooth numbers. All smaller numbers can; for example, 1849 = 3^4*5^2 - 2^4*11, 2309 = 2*3^5*5 - 11^2.
		

Crossrefs

Cf. A051038 (11-smooth numbers).
Cf. numbers not the difference of p-smooth numbers for other values of p: A101082 (p=2), A290365 (p=3), A308456 (p=5), A326318 (p=7), A326320 (p=13).
Cf. A308247.
Previous Showing 11-20 of 38 results. Next