Original entry on oeis.org
1, 1, -1, -1, 7, 3, -31, -17, 127, 155, -2555, -2073, 1414477, 38227, -57337, -929569, 118518239, 28820619, -5749691557, -1109652905, 91546277357, 51943281731, -1792042792463, -2905151042481, 1982765468311237, 191329672483963, -286994504449393, -14655626154768697, 3187598676787461083, 1291885088448017715, -4625594554880206790555
Offset: 0
-
A225825 := proc(n)
local nhalf ;
nhalf := floor(n/2) ;
if type(n,'even') then
A001896(nhalf) ;
else
(-1)^nhalf*A110501(nhalf+1) ;
end if;
end proc; # R. J. Mathar, Oct 28 2013
-
a[0] = 1; a[n_] := Numerator[BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 01 2013 *)
A162508
A binomial sum of powers related to the Bernoulli numbers, triangular array, read by rows.
Original entry on oeis.org
-1, -2, 2, -4, 10, -6, -8, 38, -54, 24, -16, 130, -330, 336, -120, -32, 422, -1710, 3000, -2400, 720, -64, 1330, -8106, 21840, -29400, 19440, -5040, -128, 4118, -36414, 141624, -285600, 312480, -176400, 40320
Offset: 1
For n >= 1, k >= 1:
..................... -1
................... -2, 2
................. -4, 10, -6
.............. -8, 38, -54, 24
......... -16, 130, -330, 336, -120
..... -32, 422, -1710, 3000, -2400, 720
-64, 1330, -8106, 21840, -29400, 19440, -5040
-
T := proc(n,k) local v; if n=0 and k=0 then 1 else
add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
# Peter Bala's e.g.f. assuming offset 0:
egf := (x, z) -> -((1-x)/exp(z) + x)^(-2):
ser := series(egf(x, z), z, 10): coz := n -> n!*coeff(ser, z, n):
row := n -> seq(coeff(coz(n), x, k), k = 0..n):
seq(print(row(n)), n = 0..9); # Peter Luschny, Jan 28 2021
-
t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v + 1)^(n - 1), {v, 0, k}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
-
def A162508(n, k):
if n==0 and k==0: return 1
return add((-1)^v*v*binomial(k, v)*(v+1)^(n-1) for v in (0..k))
for n in (1..8): [A162508(n, k) for k in (1..n)] # Peter Luschny, Jul 21 2014
A290317
Triangle read by rows. Row n gives the numerators of the coefficients of the Bernoulli polynomials of the second kind (in rising powers).
Original entry on oeis.org
1, 1, 1, -1, 0, 1, 1, 0, -3, 1, -19, 0, 4, -4, 1, 9, 0, -15, 55, -15, 1, -863, 0, 72, -100, 105, -12, 1, 1375, 0, -420, 1918, -1575, 119, -35, 1, -33953, 0, 2880, -4704, 3248, -1176, 700, -24, 1, 57281, 0, -22680, 39204, -29547, 60921, -2940, 414, -63, 1, -3250433, 0, 201600, -365280, 295310, -134568, 37415, -6480, 1365, -40, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: -1 0 1
3: 1 0 -3 1
4: -19 0 4 -4 1
5: 9 0 -15 55 -15 1
6: -863 0 72 -100 105 -12 1
7: 1375 0 -420 1918 -1575 119 -35 1
8: -33953 0 2880 -4704 3248 -1176 700 -24 1
9: 57281 0 -22680 39204 -29547 60921 -2940 414 -63 1
10: -3250433 0 201600 -365280 295310 -134568 37415 -6480 1365 -40 1
...
--------------------------------------------------------------------------------
The triangle of the rationals r(n, k) = T(n, k)/A290318(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1/2 1
2: -1/6 0 1
3: 1/4 0 -3/2 1
4: 19/30 0 4 -4 1
5: 9/4 0 -15 55/3 -15/2 1
6: -863/84 0 72 -100 105/2 -12 1
7: 1375/24 0 -420 1918/3 -1575/4 119 -35/2
8: -33953/90 0 2880 -4704 3248 -1176 700/3 -24 1
9: 57281/20 0 -22680 39204 -29547 60921/5 -2940 414 -63/2 1
10: -3250433/132 0 201600 -365280 295310 -134568 37415 -6480 1365/2 -40 1
...
The first polynomials B2(n, x) are:
B2(0, x) = 1,
B2(1, x) = 1/2 + x,
B2(2, x) = -1/6 + x^2,
B2(3, x) = 1/4 - (3/2)*x^2 + x^3,
...
Recurrence from Sheffer a- and z-sequence:
r(3, 0) = 3*((1/2)*r(2,0) + (-1/3)*r(2,1) + (1/6)*r(2, 2)) = 3*(-1/12 + 0 + 1/6) = 1/4.
r(4, 2) = (4/2)*(1*1*r(3, 1) + 2*(-1/2)*r(3, 2) + 3*(1/6)*r(3, 3)) = 2*(0 - (-3/2) + 1/2) = 4.
General Sheffer recurrence for B2(n, x): B2(3, x) = x*B2(2, x-1) +
F(2, d_x)*B2(2, x) = ((5/6)*x - 2*x^2 + x^3) + (1/2 + (-5/12)*d/dx + (1/3)*(1/2!)*d^2/dx^2)*(-1/6+ x^2) = 1/4 - (3/2)*x^2 + x^3.The rationals s(n) begin {1/2, -5/12, 1/3, -31/120, 1/5, -41/252, ...}.
Boas-Buck identity for B2(3, x) check: (x*d/dx - 3*1)(1/4 - (3/2)*x^2 + x^3) - 3!*(x*d/dx - 1)* *((1/2)*B2(2, x)/2! + (-5/12)*B2(1, x)/1! + (3/8)) = 0.
The alpha sequence begins {1/2, -5/12, 3/8, -251/720, 95/288, -19087/60480, ...}.
Boas-Buck column k = 2 recurrence, for n=2: r(3, 2) = -(3!*1/1)*(1/2!) * alpha(0)*r(2, 2) = -(3!/2!)*(1/2)*1= -3!/4 = -3/2.
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Steven Roman, The Umbral Calculus, Academic Press,1894, ch. 4, sect. 3.2, pp. 113-119, p. 50, p. 114.
A233808
Autosequence preceding A198631(n)/A006519(n+1). Numerators.
Original entry on oeis.org
0, 0, 1, 3, 3, 5, 5, 7, 7, -3, -3, 121, 121, -1261, -1261, 20583, 20583, -888403, -888403, 24729925, 24729925, -862992399, -862992399, 36913939769, 36913939769, -1899853421885, -1899853421885
Offset: 0
-
max = 27; p[0] = 1; p[n_] := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))/2; t = Table[Coefficient[p[n], x, k], {n, 0, max + 2}, {k, 0, max + 2}]; a[n_] := (-1)^n*Inverse[t][[n, 2]] // Numerator; a[0] = 0; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jan 11 2016 *)
A237109
a(n) is the numerator of 2*n / ((n+2) * (n+3)).
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 7, 8, 3, 5, 11, 4, 13, 7, 5, 16, 17, 3, 19, 20, 7, 11, 23, 8, 25, 13, 9, 28, 29, 5, 31, 32, 11, 17, 35, 12, 37, 19, 13, 40, 41, 7, 43, 44, 15, 23, 47, 16, 49, 25, 17, 52, 53, 9, 55, 56, 19, 29, 59, 20, 61, 31, 21, 64, 65, 11, 67, 68, 23, 35, 71, 24
Offset: 1
-
[Numerator(2*n/((n+2)*(n+3))): n in [1..50]]; // G. C. Greubel, Aug 07 2018
-
a[1, n_] := HarmonicNumber[n+1]; a[n_, m_] := a[n, m] = m*(a[n-1, m]-a[n-1, m+1]); Table[a[3, m] // Numerator, {m, 1, 72}] (* Jean-François Alcover, Feb 11 2014 *)
a[ n_] := n / {1, 2, 3, 1, 1, 6, 1, 1, 3, 2, 1, 3}[[Mod[n, 12, 1]]]; (* Michael Somos, Aug 01 2017 *)
-
{a(n) = if( n<0, -a(-n), numerator( 2*n / ((n+2) * (n+3))))}; /* Michael Somos, Aug 01 2017 */
New name using Somos's Pari code from
Joerg Arndt, May 27 2018
A182397
Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.
Original entry on oeis.org
1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0
A224964
Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.
Original entry on oeis.org
2, 2, 2, 6, 2, 6, 2, 6, 15, 2, 6, 15, 2, 6, 15, 105, 2, 6, 15, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 15015, 2, 6, 15, 105, 105, 231, 15015
Offset: 0
Triangle begins
2;
2;
2, 6;
2, 6;
2, 6, 15;
2, 6, 15;
2, 6, 15, 105;
2, 6, 15, 105;
2, 6, 15, 105, 105;
2, 6, 15, 105, 105;
2, 6, 15, 105, 105, 231;
2, 6, 15, 105, 105, 231;
2, 6, 15, 105, 105, 231, 15015;
2, 6, 15, 105, 105, 231, 15015;
-
nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Apr 25 2013 *)
A238235
Numerators of Euler twin numbers Et(n).
Original entry on oeis.org
1, -1, -1, -1, 1, 1, -1, -17, 17, 31, -31, -691, 691, 5461, -5461, -929569, 929569, 3202291, -3202291, -221930581, 221930581, 4722116521, -4722116521, -968383680827, 968383680827, 14717667114151, -14717667114151
Offset: 0
-
Join[{1, -1, -1}, Table[{nu = Numerator[EulerE[2*n+1, 1]], -nu}, {n, 1, 12}]] // Flatten (* Jean-François Alcover, Feb 24 2014 *)
Original entry on oeis.org
0, 1, 1, 1, 0, -1, 0, 1, 0, -3, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -1181820455, 0, 76977927, 0, -23749461029, 0, 8615641276005, 0, -84802531453387, 0, 90219075042845, 0
Offset: 0
A257372
a(n) = denominators of A255935(n) * triangle T(n,k) for Bernoulli(k+2), k=0 to n-1.
Original entry on oeis.org
1, 6, 6, 15, 30, 21, 42, 15, 30, 33, 66, 1365, 2730, 3, 6, 255, 510, 399, 798, 165, 330, 69, 138, 1365, 2730, 3, 6, 435, 870, 7161, 14322, 255, 510, 3, 6, 959595, 1919190, 3, 6, 6765, 13530, 903, 1806, 345, 690
Offset: 0
Comments