cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 102 results. Next

A325241 Numbers > 1 whose maximum prime exponent is one greater than their minimum.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279).
The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  28: {1,1,4}
  44: {1,1,5}
  45: {2,2,3}
  50: {1,3,3}
  52: {1,1,6}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  84: {1,1,2,4}
  90: {1,2,2,3}
  92: {1,1,9}
  98: {1,4,4}
  99: {2,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&]
    Select[Range[300],  Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* Amiram Eldar, Jan 30 2023 *)
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ Amiram Eldar, Jan 30 2023
  • Python
    from sympy import factorint
    def ok(n):
        e = sorted(factorint(n).values())
        return n > 1 and max(e) == 1 + min(e)
    print([k for k in range(280) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    

Formula

A051903(a(n)) - A051904(a(n)) = 1.

A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2025

Keywords

Comments

A set partition is separable iff the underlying set has a permutation whose adjacent elements all belong to different blocks. Note that separability only depends on the sizes of the blocks.
Conjecture: a(n) > 0 iff the multiset of prime factors of n has a permutation with all distinct run lengths.

Examples

			The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable.
The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3.
The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable.
The a(n) families for n = 2, 96, 384, 1536, 3456, 20736:
  {{1}}  {{1},{5}}    {{1},{7}}    {{1},{9}}    {{3},{7}}      {{4},{8}}
         {{1},{2,3}}  {{1},{2,5}}  {{1},{2,7}}  {{3},{1,6}}    {{4},{1,7}}
                      {{1},{3,4}}  {{1},{3,6}}  {{3},{2,5}}    {{4},{2,6}}
                                   {{1},{4,5}}  {{7},{1,2}}    {{4},{3,5}}
                                                {{1,2},{3,4}}  {{8},{1,3}}
                                                               {{1,3},{2,6}}
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
For inseparable instead of separable we have A386582, see A386632.
This is the separable case of A386587 (ordered version A382525).
A000110 counts set partitions, ordered A000670.
A003242 and A335452 count separations, ranks A333489.
A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
A239455 counts Look-and-Say partitions, complement A351293.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts partitions of separable type, ranks A335127, sums of A386585.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]];
    seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])];
    Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}]

A367585 Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 23, 28, 29, 30, 31, 35, 37, 41, 43, 44, 45, 47, 52, 53, 59, 60, 61, 63, 67, 68, 71, 73, 76, 77, 79, 83, 89, 90, 92, 97, 99, 101, 103, 105, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 140, 143, 148, 149, 150
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2023

Keywords

Comments

We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.

Examples

			The terms together with their prime indices begin:
     1: {}         28: {1,1,4}    60: {1,1,2,3}
     2: {1}        29: {10}       61: {18}
     3: {2}        30: {1,2,3}    63: {2,2,4}
     5: {3}        31: {11}       67: {19}
     6: {1,2}      35: {3,4}      68: {1,1,7}
     7: {4}        37: {12}       71: {20}
    11: {5}        41: {13}       73: {21}
    12: {1,1,2}    43: {14}       76: {1,1,8}
    13: {6}        44: {1,1,5}    77: {4,5}
    15: {2,3}      45: {2,2,3}    79: {22}
    17: {7}        47: {15}       83: {23}
    19: {8}        52: {1,1,6}    89: {24}
    20: {1,1,3}    53: {16}       90: {1,2,2,3}
    23: {9}        59: {17}       92: {1,1,9}
		

Crossrefs

Contains all primes A000040 but no other perfect powers A001597.
All terms are rootless A007916 (have no positive integer roots).
Positions of squarefree terms appear to be A073485.
Contains no nonprime prime powers A246547.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Sorted positions of first appearances in A367580.
Sorted version of A367584.
Complement of A367768.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.

Programs

  • Mathematica
    nn=100;
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
    Select[Range[nn], FreeQ[Take[qq,#-1], qq[[#]]]&]

A381438 Triangle read by rows where T(n>0,k>0) is the number of integer partitions of n whose section-sum partition ends with k.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 3, 1, 0, 0, 3, 4, 1, 2, 0, 0, 4, 7, 2, 1, 0, 0, 0, 5, 9, 4, 1, 2, 0, 0, 0, 6, 13, 4, 4, 1, 0, 0, 0, 0, 8, 18, 6, 3, 2, 3, 0, 0, 0, 0, 10, 26, 9, 5, 2, 2, 0, 0, 0, 0, 0, 12, 32, 12, 8, 4, 2, 4, 0, 0, 0, 0, 0, 15
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2025

Keywords

Comments

The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Triangle begins:
   1
   1  1
   1  0  2
   2  1  0  2
   3  1  0  0  3
   4  1  2  0  0  4
   7  2  1  0  0  0  5
   9  4  1  2  0  0  0  6
  13  4  4  1  0  0  0  0  8
  18  6  3  2  3  0  0  0  0 10
  26  9  5  2  2  0  0  0  0  0 12
  32 12  8  4  2  4  0  0  0  0  0 15
  47 16 11  4  3  2  0  0  0  0  0  0 18
  60 23 12  8  3  2  5  0  0  0  0  0  0 22
  79 27 20  7  9  4  3  0  0  0  0  0  0  0 27
 Row n = 9 counts the following partitions:
  (711)        (522)    (333)     (441)  .  .  .  .  (9)
  (6111)       (4221)   (3321)                       (81)
  (5211)       (3222)   (32211)                      (72)
  (51111)      (22221)  (222111)                     (63)
  (4311)                                             (621)
  (42111)                                            (54)
  (411111)                                           (531)
  (33111)                                            (432)
  (321111)
  (3111111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Last column (k=n) is A000009.
Row sums are A000041.
Row sums without the last column (k=n) are A047967.
For first instead of last part we have A116861, rank A066328.
First column (k=1) is A241131 shifted right and starting with 1 instead of 0.
Using Heinz numbers, this statistic is given by A381437.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Section-sum partition: A381431, A381432, A381433, A381434, A381435, A381436.
Look-and-Say partition: A048767, A351294, A351295, A381440.

Programs

  • Mathematica
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Length[Select[IntegerPartitions[n],k==Last[egs[#]]&]],{n,15},{k,n}]

A357137 Maximal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 3, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 2.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051903, for parts A061395.
For parts instead of run-lengths we have A333766, minimal A333768.
The opposite (minimal) version is A357138.
For first instead of maximal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Max[Length/@Split[stc[n]]]],{n,0,100}]

A367586 Numbers whose prime indices have a multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) that is all ones {1,1,...}. Positions of powers of 2 in A367580.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 30, 32, 34, 36, 38, 42, 46, 58, 62, 64, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 128, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.

Examples

			We have MMK({1,1,2,2}) = {1,1} so 36 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   14: {1,4}
   16: {1,1,1,1}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   38: {1,8}
   42: {1,2,4}
		

Crossrefs

Contains all prime powers A000961 and squarefree numbers A005117.
Partitions of this type (uniform containing 1) are counted by A097986.
Positions of all one rows {1,1,...} in A367579.
Positions of powers of 2 in A367580.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
A367581 gives multiset multiplicity kernel sum, max A367583, min A055396.

Programs

  • Maple
    isA := proc(n) z := padic:-ordp(n, 2); andseq(z=p[2], p in ifactors(n)[2]) end:
    select(isA, [seq(1..222)]);  # Peter Luschny, Jun 10 2025
  • Mathematica
    Select[Range[100], #==1||EvenQ[#]&&SameQ@@Last/@FactorInteger[#]&]

Formula

Consists of 1 and all even terms of A072774 (powers of squarefree numbers).

A380958 Number of prime factors of n (with multiplicity) minus sum of distinct prime exponents of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2025

Keywords

Examples

			The prime factors of 2100 are {2,2,3,5,5,7}, with distinct multiplicities {1,2}, so a(2100) = 6 - (1+2) = 3.
		

Crossrefs

Positions of 0's are A130091, complement A130092.
The RHS (sum of distinct prime exponents) is A136565.
For prime factors instead of exponents see A280292, firsts A280286, sorted A381075.
For prime indices instead of exponents see A380955, firsts A380956, sorted A380957.
Position of first appearance of n is A380989(n).
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A005361 gives product of prime signature.
A055396 gives least prime index, greatest A061395.
A056239 (reverse A296150) adds up prime indices, row sums of A112798, counted by A001222.
A124010 lists prime exponents (signature); see A001222, A001221, A051903, A051904.

Programs

  • Mathematica
    Table[PrimeOmega[n]-Total[Union[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]

Formula

a(n) = A001222(n) - A136565(n).

A381541 Numbers appearing more than once in A048767 (Look-and-Say partition of prime indices).

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 96, 125, 128, 144, 160, 192, 216, 224, 243, 256, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The terms together with their prime indices begin:
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
   96: {1,1,1,1,1,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  160: {1,1,1,1,1,3}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  224: {1,1,1,1,1,4}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
For example, the term 96 appears in A048767 at positions 44 and 60, with prime indices:
  44: {1,1,5}
  60: {1,1,2,3}
		

Crossrefs

- fixed points are A048768, A217605
- conjugate is A381431, fixed points A000961, A000005
- all numbers present are A351294, conjugate A381432
- numbers missing are A351295, conjugate A381433
- numbers appearing only once are A381540, conjugate A381434
- numbers appearing more than once are A381541 (this), conjugate A381435
A000040 lists the primes.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381440 lists Look-and-Say partitions of prime indices, conjugate A381436.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}];
    Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]>1&]

A381542 Numbers > 1 whose greatest prime index equals their greatest prime multiplicity.

Original entry on oeis.org

2, 9, 12, 18, 36, 40, 112, 120, 125, 135, 200, 250, 270, 336, 352, 360, 375, 500, 540, 560, 567, 600, 675, 750, 784, 832, 1000, 1008, 1056, 1080, 1125, 1134, 1350, 1500, 1680, 1760, 1800, 2176, 2250, 2268, 2352, 2401, 2464, 2496, 2673, 2700, 2800, 2835, 3000
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   135: {2,2,2,3}
   200: {1,1,1,3,3}
   250: {1,3,3,3}
   270: {1,2,2,2,3}
   336: {1,1,1,1,2,4}
   352: {1,1,1,1,1,5}
   360: {1,1,1,2,2,3}
		

Crossrefs

Counting partitions by the LHS gives A008284, rank statistic A061395.
Counting partitions by the RHS gives A091602, rank statistic A051903.
For length instead of maximum we have A106529, counted by A047993 (balanced partitions).
For number of distinct factors instead of max index we have A212166, counted by A239964.
Partitions of this type are counted by A240312.
Including number of distinct parts gives A381543, counted by A382302.
A000005 counts divisors.
A000040 lists the primes, differences A001223.
A001222 counts prime factors, distinct A001221.
A051903 gives greatest prime exponent, least A051904.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents partition conjugation in terms of Heinz numbers.
A381544 counts partitions without more ones than any other part, ranks A381439.

Programs

  • Mathematica
    Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==Max@@FactorInteger[#][[All,2]]&]

Formula

A061395(a(n)) = A051903(a(n)).

A367587 Least element in row n of A367858 (multiset multiplicity cokernel).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 1, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 1, 7, 1, 16, 1, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 2, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2023

Keywords

Comments

We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.

Crossrefs

Indices of first appearances are A008578.
Depends only on rootless base A052410, see A007916.
For kernel instead of cokernel we have A055396.
For maximum instead of minimum element we have A061395.
The opposite version is A367583.
Row-minima of A367858.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367579 lists MMK, rank A367580, sum A367581, max A367583, min A055396.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&],{i,mts}]]];
    Table[If[n==1,0,Min@@mmc[prix[n]]],{n,100}]

Formula

a(n) = A055396(A367859(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A061395(n).
Previous Showing 31-40 of 102 results. Next