cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 119 results. Next

A334201 a(n) = A056239(n) - A061395(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 3, 1, 4, 2, 0, 3, 0, 4, 2, 1, 3, 4, 0, 1, 2, 3, 0, 3, 0, 2, 4, 1, 0, 4, 4, 4, 2, 2, 0, 5, 3, 3, 2, 1, 0, 4, 0, 1, 4, 5, 3, 3, 0, 2, 2, 4, 0, 5, 0, 1, 5, 2, 4, 3, 0, 4, 6, 1, 0, 4, 3, 1, 2, 3, 0, 5, 4, 2, 2, 1, 3, 5, 0, 5, 4, 5, 0, 3, 0, 3, 5
Offset: 1

Views

Author

Antti Karttunen, May 11 2020

Keywords

Comments

a(n) is the sum of all other parts of the partition having Heinz number n except one instance of the largest part.

Crossrefs

Sum of A339895 and A339896.
Differs from A323077 for the first time at n=169, where a(169) = 6, while A323077(169) = 5.
Cf. also A334107.

Programs

  • Mathematica
    Array[Total[# /. {p_, c_} /; p > 0 :> PrimePi[p] c] - PrimePi@ #[[-1, 1]] &@ FactorInteger[#] &, 105] (* Michael De Vlieger, May 14 2020 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A334201(n) = if(1==n,0,(bigomega(n)-1)+A334201(A064989(n)));

Formula

a(n) = A056239(n) - A061395(n) = A056239(A052126(n)).
a(n) = A318995(A122111(n)).
a(n) = a(A064989(n)) + A001222(n) - 1.
a(n) = A339895(n) + A339896(n). - Antti Karttunen, Dec 31 2020

A048671 a(n) is the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1

Views

Author

Keywords

Comments

A proper divisor d of n is a divisor of n such that 1 <= d < n.
Previous name was: a(n) = q(n)/q(n-1), where q(n) = n!/A003418(n).

Examples

			8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4.
a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
		

Crossrefs

Cf. A182936 gives the dual (greatest common divisor).

Programs

Formula

a(n) = A025527(n)/A025527(n-1).
a(n) = (n*A003418(n-1))/A003418(n).
a(n) = A003418(n-1)/A002944(n). [corrected by Michel Marcus, May 18 2020]
From Henry Bottomley, May 19 2000: (Start)
a(n) = n/A014963(n) = lcm(A052126(n), A032742(n)).
a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
From Vladeta Jovovic, Jul 04 2002: (Start)
a(n) = n*Product_{d | n} d^mu(d).
Product_{d | n} a(d) = A007956(n). (End)
a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - Paul Barry, Apr 15 2005
From Peter Luschny, Jun 09 2011: (Start)
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)

Extensions

New definition based on a comment of David Wasserman by Peter Luschny, Mar 23 2011

A329605 Number of divisors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 4, 9, 12, 32, 8, 64, 24, 18, 5, 128, 12, 256, 16, 36, 48, 512, 10, 27, 96, 16, 32, 1024, 24, 2048, 6, 72, 192, 54, 15, 4096, 384, 144, 20, 8192, 48, 16384, 64, 32, 768, 32768, 12, 81, 36, 288, 128, 65536, 20, 108, 40, 576, 1536, 131072, 30, 262144, 3072, 64, 7, 216, 96, 524288, 256, 1152, 72, 1048576, 18, 2097152, 6144, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Cf. A329606 (rgs-transform), A329608, A331284 (ordinal transform).
Cf. A331285 (the position where for the first time some term has occurred n times in this sequence).

Programs

  • Mathematica
    Block[{a}, a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Array[DivisorSigma[0, a@ #] &, 75]] (* Michael De Vlieger, Jan 24 2020, after Jean-François Alcover at A108951 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329605(n) = numdiv(A108951(n));
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=0,d); forstep(i=#f~,1,-1, e += f[i,2]; d = (primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1]))); f[i,1] = (e+1); f[i,2] = d); factorback(f)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A000005(A108951(n)).
a(n) >= A329382(n) >= A329617(n) >= A329378(n).
A020639(a(n)) = A329614(n).
From Antti Karttunen, Jan 14 2020: (Start)
a(A052126(n)) = A329382(n).
a(A002110(n)) = A000142(1+n), for all n >= 0.
a(n) > A056239(n).
a(A329902(n)) = A002183(n).
A000265(a(n)) = A331286(n).
gcd(n,a(n)) = A331283(n).
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > ... > kx, then a(n) = (1+e(k1))^(k1-k2) * (1+e(k1)+e(k2))^(k2-k3) * ... * (1+e(k1)+e(k2)+...+e(kx))^kx.
A000035(a(n)) = A000035(A000005(n)) = A010052(n).
(End)

A253550 Shift one instance of the largest prime one step towards larger primes: a(1) = 1, for n>1: a(n) = (n / prime(g)) * prime(g+1), where g = A061395(n), index of the greatest prime dividing n.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 15, 14, 13, 20, 17, 22, 21, 24, 19, 30, 23, 28, 33, 26, 29, 40, 35, 34, 45, 44, 31, 42, 37, 48, 39, 38, 55, 60, 41, 46, 51, 56, 43, 66, 47, 52, 63, 58, 53, 80, 77, 70, 57, 68, 59, 90, 65, 88, 69, 62, 61, 84, 67, 74, 99, 96, 85, 78, 71, 76, 87, 110, 73, 120, 79, 82, 105, 92, 91, 102, 83, 112, 135, 86, 89
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A252462.
Cf. A102750 (same terms, but with 2 instead of 1, sorted into ascending order).

Programs

Formula

a(1) = 1; for n>1: a(n) = A065091(A061395(n)) * A052126(n).
Other identities. For all n >= 1:
A252462(a(n)) = n. [A252462 works as an inverse function for this injection.]
a(n) <= A253560(n).

A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 2, 1, 4, 8, 2, 9, 3, 1, 6, 1, 5, 4, 2, 8, 8, 1, 2, 4, 4, 1, 6, 1, 3, 9, 2, 1, 5, 16, 12, 4, 3, 1, 12, 8, 4, 4, 2, 1, 8, 1, 2, 9, 6, 8, 6, 1, 3, 4, 12, 1, 10, 1, 2, 18, 3, 16, 6, 1, 5, 16, 2, 1, 8, 8, 2, 4, 4, 1, 12, 16, 3, 4, 2, 8, 6, 1, 24, 9, 16, 1, 6, 1, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - Gus Wiseman, Mar 27 2022

Crossrefs

This is the conjugate version of A003963 (product of prime indices).
The solutions to a(n) = A003963(n) are A325040, counted by A325039.
The Heinz number of the conjugate partition is given by A122111.
These are the row products of A321649 and of A321650.
A000700 counts self-conj partitions, ranked by A088902, complement A330644.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and of A296150.
A124010 gives prime signature, sorted A118914, sum A001222.
A238744 gives the conjugate of prime signature, rank A238745.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ from A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329382(n) = A005361(A108951(n));
    
  • PARI
    A329382(n) = if(1==n,1,my(f=factor(n),e=0,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A005361(A108951(n)).
A329605(n) >= a(n) >= A329617(n) >= A329378(n).
a(A019565(n)) = A284001(n).
From Antti Karttunen, Jan 14 2020: (Start)
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
a(n) = A000005(A331188(n)) = A329605(A052126(n)).
(End)
a(n) = A003963(A122111(n)). - Gus Wiseman, Mar 27 2022

A335885 The length of a shortest path from n to a power of 2, when applying the nondeterministic maps k -> k - k/p and k -> k + k/p, where p can be any of the odd prime factors of k, and the maps can be applied in any order.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 0, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 1, 3, 2, 3, 2, 2, 1, 3, 0, 3, 3, 2, 1, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 1, 4, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 1, 2, 2, 4, 2, 3, 2, 3, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Comments

The length of a shortest path from n to a power of 2, when using the transitions x -> A171462(x) and x -> A335876(x) in any order.
a((2^e)-1) is equal to A046051(e) = A001222((2^e)-1) when e is either a Mersenne exponent (in A000043), or some other number: 1, 4, 6, 8, 16, 32. For example, 32 is present because 2^32 - 1 = 4294967295 = 3*5*17*257*65537, a squarefree product of five known Fermat primes. - Antti Karttunen, Aug 11 2020

Examples

			A335876(67) = 68, and A171462(68) = 64 = 2^6, and this is the shortest path from 67 to a power of 2, thus a(67) = 2.
A171462(15749) = 15748, A335876(15748) = 15872, A335876(15872) = 16384 = 2^14, and this is the shortest path from 15749 to a power of 2, thus a(15749) = 3.
		

Crossrefs

Cf. A000079, A335911, A335912 (positions of 0's, 1's and 2's in this sequence) and array A335910.

Programs

  • PARI
    A335885(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+min(A335885(f[k,1]-1),A335885(f[k,1]+1))))); };
    
  • PARI
    \\ Or empirically as:
    A171462(n) = if(1==n,0,(n-(n/vecmax(factor(n)[, 1]))));
    A335876(n) = if(1==n,2,(n+(n/vecmax(factor(n)[, 1]))));
    A209229(n) = (n && !bitand(n,n-1));
    A335885(n) = if(A209229(n),0,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A171462(u); if(A209229(a), return(k)); b = A335876(u); if(A209229(b), return(k)); newxs = setunion([a],newxs); newxs = setunion([b],newxs)); xs = newxs));

Formula

Fully additive with a(2) = 0, and a(p) = 1+min(a(p-1), a(p+1)), for odd primes p.
For all n >= 1, a(n) <= A335875(n) <= A335881(n) <= A335884(n) <= A335904(n).
For all n >= 0, a(A000244(n)) = n, and these also seem to give records.

A064415 a(1) = 0, a(n) = iter(n) if n is even, a(n) = iter(n)-1 if n is odd, where iter(n) = A003434(n) = smallest number of iterations of Euler totient function phi needed to reach 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5
Offset: 1

Views

Author

Christian WEINSBERG (cweinsbe(AT)fr.packardbell.org), Sep 30 2001

Keywords

Comments

a(n) is the exponent of the eventual power of 2 reached when starting from k=n and then iterating the nondeterministic map k -> k-(k/p), where p can be any odd prime factor of k, for example, the largest. Note that each original odd prime factor p of n brings its own share of 2's to the final result after it has been completely processed (with all intermediate odd primes also eliminated, leaving only 2's). As no 2's are removed, also all 2's already present in the original n are included in the eventual power of 2 that is reached, implying that a(n) >= A007814(n). - Antti Karttunen, May 13 2020

Crossrefs

The 2-adic valuation of A309243.
Partial sums of A334195. Cf. A053044 for partial sums of this sequence.
Cf. also A334097 (analogous sequence when using the map k -> k + k/p).

Programs

Formula

For all integers m >0 and n>0 a(m*n)=a(m)+a(n). The function a(n) is completely additive. The smallest integer q which satisfy the equation a(q)=n is 2^q, the greatest is 3^q. For all integers n>0, the counter image off n, a^-1(n) is finite.
a(1) = 0 and a(n) = A054725(n) for n>=2. - Joerg Arndt, Apr 08 2014, A-number corrected by Antti Karttunen, May 13 2020
From Antti Karttunen, May 13 2020: (Start)
For n > 1, a(n) = A003434(n) - A000035(n).
a(1) = 0, a(2) = 1 and for n > 2, a(n) = sum(p | n, a(p-1)), where sum is over all primes p that divide n, with multiplicity. (Cf. A054725).
a(1) = 0, a(2) = 1 and a(p) = 1 + a((p-1)/2) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [From above formula, 1+ compensates for the "lost" 2]
a(n) = A007814(A309243(n)). [From Rémy Sigrist's conjecture in the latter sequence. This reduces to a(n) = sum(p|n, a(p-1)) formula above, thus holds also]
If A209229(n) = 1 [when n is a power of 2], a(n) = A007814(n), otherwise a(n) = a(n-A052126(n)) = a(A171462(n)). [From the definition in the comments]
a(n) = A064097(n) - A329697(n).
a(2^k) = a(3^k) = k.
(End)

Extensions

More terms from David Wasserman, Jul 22 2002
Definition corrected by Reinhard Zumkeller, Sep 18 2011

A325163 Heinz number of the inner lining partition of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 7, 5, 10, 7, 11, 7, 13, 11, 14, 7, 17, 14, 19, 11, 22, 13, 23, 11, 21, 17, 21, 13, 29, 22, 31, 11, 26, 19, 33, 22, 37, 23, 34, 13, 41, 26, 43, 17, 33, 29, 47, 13, 55, 33, 38, 19, 53, 33, 39, 17, 46, 31, 59, 26, 61, 37, 39, 13, 51, 34, 67, 23
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The k-th part of the inner lining partition of an integer partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
which has diagonal distances
  3 3 3 2 1 1
  3 2 2 2 1
  2 2 1 1 1
  1 1 1
so the inner lining partition is (9,6,4), which has Heinz number 2093, so a(7865) = 2093.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(-Differences[Total/@Take[FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,Reverse[Flatten[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{1,-2}]]),{n,100}]

A325166 Size of the internal portion of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 3, 0, 0, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 0, 1, 3, 1, 0, 1, 3, 3, 2, 1, 0, 3, 3, 1, 2, 1, 0, 3, 0, 1, 3, 0, 3, 3, 0, 1, 2, 4, 0, 2, 0, 1, 4, 1, 4, 3, 0, 1, 3, 1, 0, 3, 3, 1, 2, 1, 0, 4, 4, 1, 2, 1, 3, 1, 0, 4, 3, 3, 0, 3, 0, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
with internal portion
  o o o o o
  o o o o
  o o o
of size 12, so a(7865) = 12.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Total[primeMS[n]]-Max[primeMS[n]]-Length[primeMS[n]]+Length[Union[primeMS[n]]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325166(n) = (A056239(n) - A061395(n) - bigomega(n) + omega(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = A056239(n) - A061395(n) - A001222(n) + A001221(n).
a(n) = A056239(n) - A297113(n).

Extensions

More terms from Antti Karttunen, Apr 14 2019

A334092 Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2.

Original entry on oeis.org

7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1-A052126(p-1)) is [a power of 2].
Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., .

Crossrefs

Primes in A334102.
Intersection of A081091 and A147545.
Subsequences: A039687, A050526, A300407.

Programs

  • PARI
    isA334092(n) = (isprime(n)&&2==A329697(n));
    
  • PARI
    A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1]));
    A209229(n) = (n && !bitand(n,n-1));
    isA334092(n) = (isprime(n)&&(!A209229(n-1))&&A209229(n-1-A052126(n-1)));
    
  • PARI
    list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(),t); for(e=0,4, t=2^2^e+1; while((t<<=1)Charles R Greathouse IV, Apr 14 2020

Extensions

More terms from Giovanni Resta, Apr 14 2020
Previous Showing 31-40 of 119 results. Next