cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A145878 Triangle read by rows: T(n,k) is the number of permutations of [n] having k strong fixed points (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 14, 6, 3, 0, 1, 77, 29, 9, 4, 0, 1, 497, 160, 45, 12, 5, 0, 1, 3676, 1031, 249, 62, 15, 6, 0, 1, 30677, 7590, 1603, 344, 80, 18, 7, 0, 1, 285335, 63006, 11751, 2214, 445, 99, 21, 8, 0, 1, 2928846, 583160, 97056, 16168, 2865, 552, 119, 24
Offset: 0

Views

Author

Emeric Deutsch, Oct 29 2008

Keywords

Comments

A permutation p of {1,2,...,n} is said to have j as a strong fixed point (splitter) if p(k) < j for k < j and p(k) > j for k > j.
T(n,k) is also the number of permutation graphs on n vertices with exactly k distinct dominating sets of size one. See the link by Theresa Baren, et al. -Daniel A. McGinnis, Oct 16 2018
The values T(k+r,k) are given as a polynomial expression in k when r is fixed, and the polynomial expressions can be calculated recursively. See the link by Theresa Baren, et al. -Daniel A. McGinnis, Oct 19 2018

Examples

			T(5,3) = 4 because we have 1'2'3'54, 1'2'435', 1'324'5' and 213'4'5' (the strong fixed points are marked).
Triangle starts:
   1;
   0,  1;
   1,  0,  1;
   3,  2,  0,  1;
  14,  6,  3,  0,  1;
  77, 29,  9,  4,  0,  1;
		

References

  • Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 49.

Crossrefs

Row sums gives A000142.

Programs

  • Maple
    n:=7: sfix:=proc(p) local ct,i: ct:= 0: for i to nops(p) do if p[i]=i and `subset`({seq(p[j],j=1..i-1)},{seq(k,k=1..i-1)})=true then ct:=ct+1 else end if end do: ct end proc: with(combinat): P:=permute(n): s:=[seq(sfix(P[j]),j= 1..factorial(n))]: for i from 0 to n do a[i]:=0 end do: for j to factorial(n) do if s[j]=0 then a[0]:=a[0]+1 elif s[j]=1 then a[1]:=a[1]+1 elif s[j]=2 then a[2]:=a[2]+1 elif s[j]=3 then a[3]:=a[3]+1 elif s[j]=4 then a[4]:=a[4]+1 elif s[j]=5 then a[5]:=a[5]+1 elif s[j]=6 then a[6]:=a[6]+1 elif s[j]=7 then a[7]:= a[7]+1 elif s[j]=8 then a[8]:=a[8]+1 elif s[j]=9 then a[9]:=a[9]+1 elif s[j]= 10 then a[10]:=a[10]+1 end if end do: seq(a[k],k=0..n); # yields row m of the triangle, where m is the value of n specified at the beginning of the program
    n:=7: G:=1:for r from n to 2 by -1 do G:=1-(2*r-1)*z-(r^2*z^2)/G:od:G:=1/(1-t*z-z^2/G):
    Gser := simplify(series(G, z = 0, n+1)): for m from 0 to n do seq(coeff(coeff(Gser, z, m), t, k), k = 0 .. m) end do; # based on P. Barry's g.f.; yields sequence in triangular form
  • Mathematica
    nn=10;p=Sum[n!x^n,{n,0,nn}];i=1-1/p;CoefficientList[Series[1/(1-(i-x+y x)),{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Apr 27 2012 *)

Formula

T(n,0) = A052186(n).
Sum_{k=1..n} T(n,k) = A006932(n).
Sum_{k=0..n} k*T(n,k) = A003149(n-1).
G.f.: 1/(1-xy-x^2/(1-3x-4x^2/(1-5x-9x^2/(1-7x-16x^2/(1-9x-25x^2/(1-... (continued fraction). - Paul Barry, Dec 09 2009
G.f.: 1/(1-(I(x)- x + y*x)) where I(x) is o.g.f. for A003319. - Geoffrey Critzer, Apr 27 2012
From Daniel A. McGinnis, Oct 15 2018: (Start)
T(n,k) = Sum_{i=1..n-k+1} T(n-i,k-1)*T(i-1,0).
T(3+k,k)=3k+3, T(4+k,k)=(k+1)(k+28)/2, T(5+k,k)=(k+1)(3k+77), T(6+k,k)=(k+1)(k^2+110k+2982)/6, T(7+k,k)=(k+1)(3k^2+235k+7352)/2 (previous conjectures).
See the link by Theresa Baren, et al. (End)

A259872 a(0)=-1, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) + Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).

Original entry on oeis.org

-1, 1, -1, 2, -1, 9, 26, 201, 1407, 11714, 107983, 1102433, 12332994, 150103585, 1974901951, 27935229074, 422799610943, 6818164335881, 116717210194218, 2113959805887881, 40388891717569887, 811833598825134258, 17126091132964548335, 378335451153341591041
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1), {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
  • Sage
    @CachedFunction
    def a(n) : return -1 if n==0 else 1 if n==1 else n*a(n-1) + (n-2)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [0..n-1]) # Eric M. Schmidt, Jul 10 2015

Formula

Martin and Kearney (2015) give a g.f.
a(n) ~ (n-1)! / exp(1) * (1 - 2/n + 1/n^2 + 1/n^3 - 10/n^4 - 61/n^5 - 382/n^6 - 3489/n^7 - 39001/n^8 - 484075/n^9 - 6619449/n^10), for coefficients see A260950. - Vaclav Kotesovec, Jul 29 2015

Extensions

Definition corrected by and more terms from Eric M. Schmidt, Jul 10 2015

A225960 Number of permutations of [n] having exactly one strong fixed block.

Original entry on oeis.org

0, 1, 1, 3, 9, 38, 198, 1229, 8819, 71825, 654985, 6615932, 73357572, 886078937, 11583028581, 162939646239, 2454350815033, 39415438078466, 672282146765650, 12137067564016917, 231223273420524311, 4635720862911035149, 97565878042828417209, 2150797149322137710488
Offset: 0

Views

Author

Alois P. Heinz, May 22 2013

Keywords

Comments

See A186373 for the definition of strong fixed blocks.

Crossrefs

Column k=1 of A186373.

Programs

  • Maple
    b:= proc(n) b(n):= -`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end:
    a:= n-> add(b(i)*add(b(j), j=0..n-i-1), i=0..n-1):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 25; A052186zero = Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1/x]/E^(1/x) + 1), {x, 0, nmax+1}]], x]]; suma = ConstantArray[0, nmax+1]; s = 0; Do[s = s + A052186zero[[j+1]]; suma[[j+1]] = s, {j, 0, nmax}]; Flatten[{0, Table[Sum[A052186zero[[i+1]]*suma[[n-i]], {i, 0, n-1}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 05 2015, more efficient program for big nmax *)

Formula

a(n) = Sum_{1<=i<=j<=n} A052186(i-1) * A052186(n-j).
a(n) = Sum_{i=0..n-1} A052186(i) * Sum_{j=0..n-i-1} A052186(j).
a(n) ~ 2 * (n-1)! * (1 - 1/n + 2/n^3 + 11/n^4 + 97/n^5 + 1105/n^6 + 13905/n^7 + 189633/n^8 + 2803873/n^9 + 44875599/n^10), for coefficients see A260957. - Vaclav Kotesovec, Aug 29 2014, extended Aug 05 2015

A346198 a(n) is the number of permutations on [n] with no strong fixed points but contains at least one small descent.

Original entry on oeis.org

0, 1, 1, 8, 43, 283, 2126, 17947, 168461, 1741824, 19684171, 241506539, 3198239994, 45482655683, 691471698917, 11193266251700, 192238116358427, 3491633681792507, 66875708261486766, 1347168876070616179, 28474546456352896021, 630130731702950549248, 14570725407559756078387, 351411668456841530417027
Offset: 1

Views

Author

Keywords

Comments

A small descent in a permutation p is a position i such that p(i)-p(i+1)=1.
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.

Examples

			For n = 4, the a(4) = 8 permutations on [4] with no strong fixed points but has small descents: {([2, 1], [4, 3]), (2, [4, 3], 1), ([3, 2], 4, 1), (3, 4, [2, 1]), (4, 1, [3, 2]), (4, [2, 1], 3), ([4, 3], 1, 2), (<4, 3, 2, 1>)} []small descent, <>consecutive small descents.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Crossrefs

Programs

Formula

For n > 2, a(n) = b(n)-c(n) where b(n) = A052186(n-1), c(n) = A346189(n).

A355488 Expansion of g.f. f/(1+2*f) where f is the g.f. of nonempty permutations.

Original entry on oeis.org

0, 1, 0, 2, 8, 48, 328, 2560, 22368, 216224, 2291456, 26430336, 329805952, 4429255168, 63730438656, 978479250944, 15972310317056, 276292865550336, 5049672714569728, 97245533647568896, 1968395389124714496, 41783552069858877440, 928204423021249003520
Offset: 0

Views

Author

F. Chapoton, Jul 04 2022

Keywords

Comments

This is to factorials what Fine numbers are to Catalan numbers. There is no known combinatorial interpretation.
The same construction, applied to the central binomials, leads to A126984, apart from signs and the first term. - Peter Luschny, Jul 22 2022
a(n) is the number of permutations of [n] whose number of components is odd minus the number of those permutations with an even number of components. - Peter Luschny, Sep 10 2022

Examples

			Consider the permutations of [3]: [2,3,1], [3,1,2] and [3,2,1] have 1 component,
[1,3,2] and [2,1,3] have 2 components, and [1,2,3] has three components. Thus 3 - 2 + 1 = 2 = a(3). - _Peter Luschny_, Sep 10 2022
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> coeff(series(f/(1+2*f), x, n+1), x, n))(add(j!*x^j, j=1..n)):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 20 2022
  • Mathematica
    nmax=22; f[x_]:=Sum[i! x^i,{i,nmax}]; CoefficientList[Series[f[x]/(1+2f[x]),{x,0,nmax}],x] (* Stefano Spezia, Jul 04 2022 *)
  • SageMath
    A = QQ[['t']]
    f = A([0] + [factorial(n) for n in range(1,30)]).O(30)
    print(list(f/(1+2*f)))
    
  • SageMath
    # Uses function A059438_triangle.
    def A355488_list(size):
        triangle = A059438_triangle(size)
        return [0] + [sum((-1)^k*t for (k,t) in enumerate(row)) for row in triangle]
    print(A355488_list(20))  # Peter Luschny, Sep 10 2022

Formula

G.f.: f/(1+2*f) where f is (the g.f. of A000142) - 1.
a(n) = -Sum_{k=1..n} (-1)^k * A059438(n, k) for n >= 1. - Peter Luschny, Sep 10 2022

A174662 Partial sums of A003149.

Original entry on oeis.org

1, 3, 8, 24, 88, 400, 2212, 14500, 110116, 951076, 9205156, 98646436, 1159016356, 14808626596, 204358994596, 3028436306596, 47955883346596, 807990334802596, 14430691329362596, 272302801683794596, 5412861968581970596
Offset: 0

Views

Author

Jonathan Vos Post, Nov 30 2010

Keywords

Comments

Total resistance of a circuit whose n-th component is between opposite corners of an n-dimensional hypercube of unit resistors, multiplied by n!. The only prime in the sequence is 3. The subsequence of squares begins 1, 400, 9205156 = 2^2 * 37^2 * 41^2.

Examples

			a(5) = 1 + 2 + 5 + 16 + 64 + 312 = 400 = 2^4 * 5^2.
		

Crossrefs

Formula

a(n) = Sum_{i=0..n} Sum_{k=0..i} k!*(i-k)!.

Extensions

Offset set to 0 by Alois P. Heinz, Jun 28 2017
Previous Showing 11-16 of 16 results.