cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021

A073213 Sum of two powers of 17.

Original entry on oeis.org

2, 18, 34, 290, 306, 578, 4914, 4930, 5202, 9826, 83522, 83538, 83810, 88434, 167042, 1419858, 1419874, 1420146, 1424770, 1503378, 2839714, 24137570, 24137586, 24137858, 24142482, 24221090, 25557426, 48275138, 410338674, 410338690, 410338962, 410343586, 410422194, 411758530, 434476242, 820677346
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 17^2 + 17^0 = 290.
Table T(n,m) begins:
      2;
     18,    34;
    290,   306,   578;
   4914,  4930,  5202,  9826;
  83522, 83538, 83810, 88434, 167042;
  ...
		

Crossrefs

Cf. A001026 (powers of 17).
Equals twice A073221.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073214 (19), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Union[Total/@Tuples[17^Range[0,10],2]] (* Harvey P. Dale, Apr 09 2015 *)
  • Python
    from math import isqrt
    def A073213(n): return 17**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+17**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 17^n + 17^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 18*x)/((1 - x)*(1 - 17*x)*(1 - 17*x*y)). - J. Douglas Morrison, Jul 26 2021

A073214 Sum of two powers of 19.

Original entry on oeis.org

2, 20, 38, 362, 380, 722, 6860, 6878, 7220, 13718, 130322, 130340, 130682, 137180, 260642, 2476100, 2476118, 2476460, 2482958, 2606420, 4952198, 47045882, 47045900, 47046242, 47052740, 47176202, 49521980, 94091762, 893871740, 893871758, 893872100, 893878598, 894002060, 896347838, 940917620, 1787743478
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 19^2 + 19^0 = 362.
Table begins:
       2;
      20,     38;
     362,    380,    722;
    6860,   6878,   7220,  13718;
  130322, 130340, 130682, 137180, 260642;
  ...
		

Crossrefs

Cf. A001029.
Equals twice A073222.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[19^n + 19^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Total/@Tuples[19^Range[0,10],2]//Union (* Harvey P. Dale, Jan 04 2019 *)
  • Python
    from math import isqrt
    def A073214(n): return 19**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+19**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 19^n + 19^m for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 20*x) / ((1 - x) * (1 - 19*x) * (1 - 19*x*y)). - J. Douglas Morrison, Jul 28 2021

A073215 Sum of two powers of 23.

Original entry on oeis.org

2, 24, 46, 530, 552, 1058, 12168, 12190, 12696, 24334, 279842, 279864, 280370, 292008, 559682, 6436344, 6436366, 6436872, 6448510, 6716184, 12872686, 148035890, 148035912, 148036418, 148048056, 148315730, 154472232, 296071778
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 23^2 + 23^0 = 530.
Table begins:
       2;
      24,     46;
     530,    552,   1058;
   12168,  12190,  12696,  24334;
  279842, 279864, 280370, 292008, 559682;
  ...
		

Crossrefs

Cf. A009967.
Equals twice A072822.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19).

Programs

  • Mathematica
    With[{nn=30},Take[Union[Total/@Tuples[23^Range[0,nn],2]],nn]] (* Harvey P. Dale, Oct 16 2017 *)
  • Python
    from math import isqrt
    def A073215(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n, m) = 23^n + 23^m, for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 24*x) / ((1 - x) * (1 - 23*x) * (1 - 23*x*y)). - J. Douglas Morrison, Jul 29 2021

A194887 Numbers that are the sum of two powers of 12.

Original entry on oeis.org

2, 13, 24, 145, 156, 288, 1729, 1740, 1872, 3456, 20737, 20748, 20880, 22464, 41472, 248833, 248844, 248976, 250560, 269568, 497664, 2985985, 2985996, 2986128, 2987712, 3006720, 3234816, 5971968, 35831809, 35831820, 35831952, 35833536, 35852544, 36080640
Offset: 1

Views

Author

Jeremy Gardiner, Oct 09 2011

Keywords

Comments

Parity of this sequence is A073424.

Examples

			12^0 + 12^2 = 145
		

Crossrefs

Programs

  • Mathematica
    t = 12^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
    Total/@Tuples[12^Range[0,10],2]//Union (* Harvey P. Dale, Jul 20 2019 *)

Extensions

Typo in example corrected by Zak Seidov, Oct 23 2011

A262711 Numbers k such that sum of digits of k^2 is 7.

Original entry on oeis.org

4, 5, 32, 40, 49, 50, 149, 320, 400, 490, 500, 1049, 1490, 3200, 4000, 4900, 5000, 10490, 14900, 32000, 40000, 49000, 50000, 104900, 149000, 320000, 400000, 490000, 500000, 1049000, 1490000, 3200000, 4000000, 4900000, 5000000, 10490000, 14900000
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

Subsequence of A156638. [Bruno Berselli, Sep 28 2015]

Examples

			4 is in sequence because 4^2 = 16 and 1+6 = 7.
		

Crossrefs

Cf. sum of digits of n^2 is k: A052216 (k=4), this sequence (k=7), A262712 (k=9), A262713 (k=10).
Cf. A215614.

Programs

  • Magma
    [n: n in [1..2*10^7] | &+Intseq(n^2) eq 7];
    
  • Mathematica
    Select[Range[10^7], Total[IntegerDigits[#^2]] == 7 &]
  • PARI
    for(n=1, 1e8, if (sumdigits(n^2) == 7, print1(n", "))) \\ Altug Alkan, Sep 28 2015

A340063 The primes appear in their natural order and the absolute difference between two successive primes is the sum of the digits between them.

Original entry on oeis.org

2, 1, 3, 10, 100, 5, 20, 7, 4, 11, 110, 13, 12, 1000, 17, 200, 19, 21, 10000, 23, 6, 29, 1001, 31, 14, 100000, 37, 22, 41, 1010, 43, 30, 1000000, 47, 15, 53, 24, 59, 1100, 61, 32, 10000000, 67, 40, 71, 2000, 73, 33, 79, 102, 100000000, 83, 42, 89, 8, 97, 111, 1000000000, 101, 10001, 103, 112, 107, 10010, 109
Offset: 1

Views

Author

Eric Angelini, Dec 27 2020

Keywords

Comments

Lexicographically earliest sequence of distinct positive terms with this property. It is conjectured that the sequence is a permutation of the integers > 1.

Examples

			prime 2 + (1) = prime 3;
prime 3 + (1+0 + 1+0+0) = prime 5; (we do not put 2 between 5 and 7 as 2 is in the sequence already and not 20 as 10 is lexicographically earlier along with 100 gives the digital sum 2).
prime 5 + (2+0) = prime 7;
prime 7 + (4) = prime 11;
prime 11 + (1+1+0) = prime 13;
prime 13 + (1+2 + 1+0+0+0) = 17; etc.
		

Crossrefs

Cf. A000040 (the prime numbers), A001223 (prime gaps), A052216, A052217.

A135293 Differences between successive numbers whose sum of digits in base 3 is 2.

Original entry on oeis.org

2, 2, 2, 4, 2, 6, 10, 2, 6, 18, 28, 2, 6, 18, 54, 82, 2, 6, 18, 54, 162, 244, 2, 6, 18, 54, 162, 486, 730, 2, 6, 18, 54, 162, 486, 1458, 2188, 2, 6, 18, 54, 162, 486, 1458, 4374, 6562, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122
Offset: 0

Views

Author

Adam Shelly (adam.shelly(AT)gmail.com), Dec 04 2007, Dec 05 2007

Keywords

Comments

First differences of A052216 when the entries in that sequence are interpreted as base 3 numbers.
Can be regarded as a triangle, where T(0,0)=2, T(n+1,0) = T(n,0)+T(n,n), T(n+1,m) = T(n,m) for 0 < m <= n and T(n+1,n+1) = sum of T(n+1,0..n)

Examples

			triangle begins:
2
2 2
4 2 6
10 2 6 18
28 2 6 18 54
82 2 6 18 54 162
244 2 6 18 54 162 486.
		

Crossrefs

Cf. A052216.

Programs

  • Mathematica
    T[0, 0] := 2; T[n_, 0] := 3^(n - 1) + 1; T[n_, m_] := 2*3^(m - 1); Table[T[n, m], {n, 0, 5}, {m, 0, n}] (* G. C. Greubel, Oct 09 2016 *)
    Join[{2},Differences[Select[Range[50000],Total[IntegerDigits[#,3]]==2&]]] (* Harvey P. Dale, Jul 04 2019 *)

Formula

T(n,m) = 2*3^(m-1) = A025192(m) for m>0. T(n,0) = 2*A124302(n). - Franklin T. Adams-Watters, Sep 29 2011

Extensions

Edited by Franklin T. Adams-Watters, Sep 29 2011

A375460 Lexicographically earliest sequence of distinct nonnegative terms arranged in successive chunks whose digitsum = 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 20, 6, 12, 100, 7, 21, 8, 101, 9, 1000, 13, 14, 10000, 15, 22, 16, 30, 17, 110, 18, 100000, 19, 23, 31, 1000000, 24, 40, 25, 102, 26, 200, 27, 10000000, 28, 32, 41, 33, 103, 34, 111, 35, 1001, 36, 100000000, 37, 42, 112, 43, 120, 44, 1010, 45, 1000000000
Offset: 1

Views

Author

Eric Angelini, Aug 15 2024

Keywords

Comments

The first integer that will never appear in the sequence is 29, as its digitsum exceeds 10.
From Michael S. Branicky, Aug 16 2024: (Start)
Infinite since A052224 is infinite (as are all sequences with digital sum 1..10).
a(6492) has 1001 digits. (End)

Examples

			The first chunk of integers with digitsum 10 is (0,1,2,3,4);
the next one is (5,10,11,20),
the next one is (6,12,100),
the next one is (7,21),
the next one is (8,101),
the next one is (9,1000),
the next one is (13,14,10000), etc.
The concatenation of the above chunks produce the sequence.
		

Crossrefs

Numbers with digital sum 1..10: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10).

Programs

  • Python
    from itertools import islice
    def bgen(ds): # generator of terms with digital sum ds
        def A051885(n): return ((n%9)+1)*10**(n//9)-1 # due to Chai Wah Wu
        def A228915(n): # due to M. F. Hasler
            p = r = 0
            while True:
                d = n % 10
                if d < 9 and r: return (n+1)*10**p + A051885(r-1)
                n //= 10; r += d; p += 1
        k = A051885(ds)
        while True: yield k; k = A228915(k)
    def agen(): # generator of terms
        an, ds_block = 0, 0
        dsg = [None] + [bgen(i) for i in range(1, 11)]
        dsi = [None] + [(next(dsg[i]), i) for i in range(1, 11)]
        while True:
            yield an
            an, ds_an = min(dsi[j] for j in range(1, 11-ds_block))
            ds_block = (ds_block + ds_an)%10
            dsi[ds_an] = (next(dsg[ds_an]), ds_an)
    print(list(islice(agen(), 61))) # Michael S. Branicky, Aug 16 2024

Extensions

a(46) and beyond from Michael S. Branicky, Aug 16 2024.

A384094 Numbers whose square has digit sum 9 and no trailing zero.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 39, 45, 48, 51, 102, 105, 111, 201, 249, 318, 321, 348, 351, 501, 549, 1002, 1005, 1011, 1101, 1149, 1761, 2001, 4899, 5001, 10002, 10005, 10011, 10101, 10149, 11001, 14499, 20001, 50001, 100002, 100005, 100011, 100101, 101001, 110001, 200001, 375501, 500001, 1000002
Offset: 1

Views

Author

M. F. Hasler, Jun 15 2025

Keywords

Comments

All numbers of the form 10^a + 10^b + 1 (i.e., A052216+1 = 3*A237424) and of the form 10^a + 5*10^b with min(a, b) = 0 (i.e., A133472 U A199685), are in this sequence. Terms not of this form are (9, 18, 39, 45, 48, 249, 318, 321, 348, 351, 549, 1149, 1761, 4899, 10149, 14499, 375501, ...), see subsequence A384095. (Is this sequence finite? What is the next term?)
Is it true that no number > 1049 = A215614(6) has a square with digit sum less than 9, other than the trivial 1 and 4?

Crossrefs

Cf. A004159 (sum of digits of n^2), A215614 (sumdigits(n^2) = 7), A133472 (10^n + 5), A199685 (5*10^n + 1), A052216 (10^a + 10^b), A237424 ((10^a + 10^b + 1)/3).
See also: A058414 (digits(n^2) in {0,1,4}).

Programs

  • PARI
    select( {is_A384094(n)=n%10 && sumdigits(n^2)==9}, [1..10^5])
Previous Showing 41-50 of 56 results. Next