cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A378146 Primes p such that 16*p^4 + 1 is prime.

Original entry on oeis.org

2, 3, 17, 23, 37, 41, 53, 59, 71, 97, 127, 139, 167, 233, 263, 277, 283, 379, 389, 457, 521, 563, 571, 601, 619, 661, 691, 743, 797, 809, 811, 823, 853, 859, 877, 967, 971, 997, 1051, 1063, 1103, 1187, 1277, 1289, 1321, 1367, 1399, 1433, 1451, 1499
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2024

Keywords

Crossrefs

Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), this sequence (k = 2).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(16*p^4+1)];
    
  • Mathematica
    Select[Prime[Range[250]], PrimeQ[16*#^4 + 1] &] (* Amiram Eldar, Nov 17 2024 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(16*p^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Nov 17 2024

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Nov 17 2024

A060429 a(n) = 4*prime(n)^2+1.

Original entry on oeis.org

17, 37, 101, 197, 485, 677, 1157, 1445, 2117, 3365, 3845, 5477, 6725, 7397, 8837, 11237, 13925, 14885, 17957, 20165, 21317, 24965, 27557, 31685, 37637, 40805, 42437, 45797, 47525, 51077, 64517, 68645, 75077, 77285, 88805
Offset: 1

Views

Author

Jason Earls, Apr 06 2001

Keywords

Crossrefs

Programs

Formula

a(n) = 4*A001248(n) + 1. - Vincenzo Librandi, Dec 17 2013

A121834 Primes p of the form 4*n^2 + 1 such that 4*p^2+1 is also prime.

Original entry on oeis.org

5, 37, 677, 1297, 2917, 8837, 13457, 50177, 147457, 156817, 246017, 341057, 414737, 746497, 1136357, 1726597, 1833317, 2119937, 2802277, 2808977, 3013697, 3549457, 3865157, 3896677, 4104677, 4384837, 5354597, 5410277, 5779217, 6031937, 6635777, 7001317
Offset: 1

Views

Author

Zak Seidov, Aug 28 2006

Keywords

Comments

Intersection of A001912 and A121326. Except for the first term all other terms are == 7 (mod 10). Also all the primes 4*p^2+1 are == 7 (mod 10). - Zak Seidov, Mar 05 2015

Crossrefs

Programs

  • Mathematica
    fpQ[n_]:=PrimeQ[n]&&PrimeQ[4n^2+1]; Select[4Range[2000]^2+1,fpQ] (* Harvey P. Dale, Nov 07 2016 *)
  • PARI
    isA121834(n)={ if( (n-1) %4, return(0) ; ) ; if( issquare((n-1)/4), if( isprime(4*n^2+1), return(1), return(0) ), return(0) ; ) ; } { for(i=1,1000000, p=prime(i) ; if( isA121834(p), print1(p,",") ; ) ; ) ; } /* R. J. Mathar, Sep 01 2006*/

Extensions

More terms from R. J. Mathar, Sep 01 2006

A122429 Primes p such that q = 4p^2 + 1, r = 4q^2 + 1 and s = 4r^2 + 1 are all primes.

Original entry on oeis.org

13, 9833, 41647, 151607, 264757, 356123, 361223, 446863, 449093, 457813, 531383, 641057, 655927, 841697, 855947, 899263, 913687, 1052813, 1081757, 1379383, 1506493, 1575757, 1685087, 1821013, 1821377, 1981517, 2054233, 2142037
Offset: 1

Views

Author

Zak Seidov, Oct 20 2006

Keywords

Comments

Next terms up to 400000th prime are 2286877, 2524157, 2595247, 2621737, 2931583, 3023437, 3425843, 3428567, 3538517, 3705187, 3777883, 3799717, 3875143, 3913727, 3973553, 4019833, 4167073, 4249523, 4488167, 4651873, 4822193, 4914937, 5054167, 5108293, 5140147, 5465303, 5520007, 5542003. - Zak Seidov, Jan 16 2009
Subsequence of A122424. - Pierre CAMI, Jul 21 2014

Examples

			13 is there because 13, 677, 1833317 and 13444204889957 are prime.
		

References

  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p.74.

Crossrefs

Programs

  • Mathematica
    Reap[Do[p=Prime[n];q=4p^2+1;r=4q^2+1;s=4r^2+1;If[PrimeQ[{q,r,s}]=={True, True,True},Sow[p]],{n,15000}]][[2,1]]
    Select[Prime[Range[200000]],AllTrue[NestList[4#^2+1&,#,3],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    f(x)=4*x^2+1;
    forprime(p=1, 10^8, if(isprime(f(p))&&isprime(f(f(p)))&&isprime(f(f(f(p)))), print1(p, ", "))) \\ Derek Orr, Jul 31 2014

Extensions

More terms from Don Reble, Oct 24 2006
Edited by R. J. Mathar, Nov 02 2009

A188583 Primes p such that 6*p^3+1 is also prime.

Original entry on oeis.org

3, 5, 13, 41, 97, 131, 223, 283, 353, 397, 461, 467, 523, 577, 661, 677, 691, 773, 811, 887, 937, 997, 1091, 1223, 1277, 1321, 1447, 1487, 1567, 1571, 1637, 1721, 1741, 1777, 1823, 1861, 2161, 2243, 2273, 2341, 2351, 2357, 2371, 2383, 2467, 2551
Offset: 1

Views

Author

Bruno Berselli, Apr 22 2011

Keywords

Examples

			For prime  p = 283,  6*p^3+1 = 135991123  is prime.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2600) | IsPrime(6*p^3+1) ];
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[6#^3+1]&] (* Harvey P. Dale, May 13 2011 *)

A306882 Even numbers k such that phi(m) = k^2 has no solution.

Original entry on oeis.org

22, 34, 38, 46, 58, 62, 76, 78, 82, 86, 92, 98, 102, 106, 118, 122, 138, 142, 152, 154, 158, 164, 166, 172, 178, 182, 190, 194, 202, 212, 214, 218, 226, 238, 244, 254, 258, 262, 266, 274, 278, 282, 298, 302, 304, 310, 316, 318, 322, 328, 332, 334, 338, 344, 346, 356, 358, 362
Offset: 1

Views

Author

Bernard Schott, Mar 15 2019

Keywords

Comments

In the link, P. Pollack and C. Pomerance "show that almost all squares are missing from the range of Euler's phi-function".
Except for m=1 and m=2, phi(m) is always even, so, the odd numbers >= 3 are not included in the data for clarity.
Includes 2*p if p is a prime not in A052291. - Robert Israel, Apr 10 2019

Examples

			phi(489) = 18^2, phi(401) = 20^2, phi(577) = 24^2, phi(677) = 26^2, but there is no integer m such that phi(m) = 22^2 = 484.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-invphi(t^2)=[], [seq(i,i=2..400,2)]);  # Robert Israel, Apr 10 2019
  • PARI
    isok(n) = !(n%2) && !istotient(n^2); \\ Michel Marcus, Mar 15 2019

A309498 Least number k > 0 such that 4*p^2*k^2 + 1 is prime, where p = prime(n) is the n-th prime.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 15, 4, 2, 2, 1, 13, 5, 1, 6, 2, 13, 1, 2, 1, 3, 9, 5, 10, 5, 1, 5, 2, 9, 6, 8, 4, 2, 7, 3, 1, 1, 10, 11, 2, 7, 2, 1, 4, 5, 13, 4, 4, 3, 1, 3, 7, 2, 4, 6, 3, 7, 5, 2, 20, 6, 4, 2, 6, 1, 2, 1, 4, 3, 4, 3, 5, 5, 5, 16, 2, 14, 3, 3, 2, 2, 5, 5
Offset: 1

Views

Author

Amiram Eldar, Aug 05 2019

Keywords

Comments

Gagola calculated the first 669 terms of this sequence (for all the primes p < 5000) using an HP 9830 in 1981. She found that the largest value of k was only 45 and that 84% of the values of k were less than or equal to 10.
The Generalized Dickson Conjecture implies that the sequence contains each positive integer infinitely many times. - Robert Israel, Aug 05 2019

Examples

			a(1) = 1 since 4*1^2*prime(1)^2 + 1 = 4*1*2^2 + 1 = 17 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q,k;
      q:= 4*ithprime(n)^2;
      for k from 1 do
         if isprime(q*k^2+1) then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 05 2019
  • Mathematica
    a[n_] := Module[{k = 1, p = Prime[n]}, While[!PrimeQ[4 * k^2 * p^2 + 1], k++]; k]; Array[a, 100]
  • PARI
    a(n) = my(k=1, p=prime(n)); while (!isprime(4*p^2*k^2 + 1), k++); k; \\ Michel Marcus, Aug 05 2019

A245746 Prime numbers P such that Q=4*P^2+1, R=4*Q^2+1, S=4*R^2+1, T=4*S^2+1 and Q, R, S, T are all prime numbers.

Original entry on oeis.org

9220303, 16079387, 17232253, 43606237, 66063373, 85403083, 97649917, 104719757, 159685553, 180467533, 197072563, 344777863, 492619373, 517774063, 647320727, 672712637, 715230127, 769494413, 790845563, 909545573, 944196137, 975302173, 1120585597, 1123182763
Offset: 1

Views

Author

Pierre CAMI, Jul 31 2014

Keywords

Comments

Subsequence of A122429.

Crossrefs

Programs

  • Mathematica
    pnQ[n_]:=Module[{q=4n^2+1,r,s,t},r=4q^2+1;s=4r^2+1;t=4s^2+1;AllTrue[ {q,r,s,t},PrimeQ]]; Select[Prime[Range[5678*10^4]],pnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 08 2019 *)

A333803 Primes p such that 2*p+1 and 4*p^2+1 are also prime.

Original entry on oeis.org

2, 3, 5, 233, 653, 683, 1013, 1973, 2003, 2393, 2543, 2753, 3023, 3413, 5003, 5333, 7043, 7823, 8663, 9293, 10613, 13463, 13913, 14783, 15233, 15923, 16823, 18233, 20693, 20753, 21713, 21803, 22433, 27743, 27983, 29723, 30323, 30773, 31253, 31793, 32003, 33053, 33623, 33773, 34283, 36083, 37013
Offset: 1

Views

Author

Robert Israel, Apr 05 2020

Keywords

Comments

The generalized Bunyakovsky conjecture implies there are infinitely many terms.

Examples

			a(3)=5 is a member because 5, 2*5+1=11 and 4*5^2+1= 101 are all prime.
		

Crossrefs

Intersection of A005384 and A052291.

Programs

  • Maple
    filter:= proc(n)
      isprime(n) and isprime(2*n+1) and isprime(4*n^2+1)
    end proc:
    select(filter, [2,3,seq(i,i=5..10^5,6)]);
  • Mathematica
    Select[Prime[Range[4000]],AllTrue[{2#+1,4#^2+1},PrimeQ]&] (* Harvey P. Dale, Sep 15 2021 *)

A363059 Numbers k such that the number of divisors of k^2 equals the number of divisors of phi(k), where phi is the Euler totient function.

Original entry on oeis.org

1, 5, 57, 74, 202, 292, 394, 514, 652, 1354, 2114, 2125, 3145, 3208, 3395, 3723, 3783, 4053, 4401, 5018, 5225, 5298, 5425, 5770, 6039, 6363, 6795, 6918, 7564, 7667, 7676, 7852, 7964, 8585, 9050, 9154, 10178, 10535, 10802, 10818, 10954, 11223, 12411, 13074, 13634
Offset: 1

Views

Author

Amiram Eldar, May 16 2023

Keywords

Comments

Numbers k such that A048691(k) = A062821(k).
Amroune et al. (2023) characterize solutions to this equation and prove that Dickson's conjecture implies that this sequence is infinite.
They show that the only squarefree semiprime terms are 57, 514 and some of the numbers of the form 2*(4*p^2+1), where p and 4*p^2+1 are both primes (a subsequence of A259021).

Examples

			5 is a term since both 5^2 = 25 and phi(5) = 4 have 3 divisors.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], DivisorSigma[0, #^2] == DivisorSigma[0, EulerPhi[#]] &]
  • PARI
    is(n) = numdiv(n^2) == numdiv(eulerphi(n));
Previous Showing 11-20 of 21 results. Next