cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 136 results. Next

A378250 Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.

Original entry on oeis.org

4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect-powers. The second shows the primes. The third is a(n).
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
       4       8              16                25            32
The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    25: {3,3}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   100: {1,1,3,3}
   121: {5,5}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   169: {6,6}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   225: {2,2,3,3}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

A version for prime-powers (but starting with prime(k) + 1) is A345531.
The opposite is union of A378035, restriction of A081676.
Union of A378249, run-lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436, positive A377283, postpositive A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A072721 Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2002

Keywords

Comments

First differs from A322968 at a(12) = 10, A322968(12) = 9.

Examples

			a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)  (C)
            (22)       (33)        (44)    (333)  (55)          (66)
                       (42)        (422)          (82)          (84)
                       (222)       (2222)         (442)         (93)
                                                  (4222)        (444)
                                                  (22222)       (822)
                                                                (3333)
                                                                (4422)
                                                                (42222)
                                                                (222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
    
  • PARI
    seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025

Formula

a(n) = A072721(n)-A072721(n-1). a(p)=1 for p prime.
a(n) = A322900(n) - 1. - Gus Wiseman, Jan 01 2019
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A175082(k)^j)). - Andrew Howroyd, Jan 23 2025
For n >= 1, a(n) >= A379957(n). - Antti Karttunen, Jan 23 2025

A294337 Number of ways to write 2^n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 7, 2, 4, 4, 10, 2, 7, 2, 7, 4, 4, 2, 10, 4, 4, 6, 7, 2, 8, 2, 12, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 7, 7, 4, 2, 15, 4, 7, 4, 7, 2, 10, 4, 10, 4, 4, 2, 13, 2, 4, 7, 16, 4, 8, 2, 7, 4, 8, 2, 16, 2, 4, 7, 7, 4, 8, 2, 15, 10, 4, 2, 13, 4, 4, 4, 10, 2, 13, 4, 7, 4, 4, 4, 18, 2, 7, 7, 12, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(12) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294336(d) = A294336(A000079(n)). - Antti Karttunen, Jun 12 2018

Extensions

More terms from Antti Karttunen, Jun 12 2018

A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

By convention a(1) = 1.
Values can be 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 60, 63, 84, 90, etc. - Robert G. Wilson v, Dec 10 2017

Examples

			The a(256) = 10 ways are:
(2^1)^8    (2^2)^4   (2^4)^2  (2^8)^1
(4^1)^4    (4^2)^2   (4^4)^1
(16^1)^2   (16^2)^1
(256^1)^1
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,t;
      m:= igcd(seq(t[2],t=ifactors(n)[2]));
      add(numtheory:-tau(d),d=numtheory:-divisors(m))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 19 2017
  • Mathematica
    Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

Formula

a(A175082(k)) = 1, a(A093771(k)) = 3.
a(n) = Sum_{d|A052409(n)} A000005(d).

A376560 Points of upward concavity in the sequence of perfect-powers (A001597). Positives of A376559.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are positive.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, upward concavity is negative curvature.

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with positive positions (A376560):
  1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, ...
		

Crossrefs

The version for A000002 is A022297, complement A025505. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258025.
These are positions of positive terms in A376559.
For downward concavity we have A376561 (probably the complement).
A001597 lists the perfect-powers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    S:= {1,seq(seq(i^j,j=2..floor(log[i](N))),i=2..isqrt(N))}:
    L:= sort(convert(S,list)):
    DL:= L[2..-1]-L[1..-2]:
    D2L:= DL[2..-1]-DL[1..-2]:
    select(i -> D2L[i]>0, [$1..nops(D2L)]); # Robert Israel, Dec 01 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],1]

A074984 m^p-n, for smallest m^p>=n.

Original entry on oeis.org

0, 2, 1, 0, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8
Offset: 1

Views

Author

Zak Seidov, Oct 07 2002

Keywords

Comments

a(n) = 0 if n = m^p that is if n is a full power (square, cube etc.).
This is the distance between n and the next perfect power. The previous perfect power is A081676, which differs from n by A069584. After a(8) = a(9) this sequence is an anti-run (no adjacent equal terms). - Gus Wiseman, Dec 02 2024

Crossrefs

Sequences obtained by subtracting n from each term are placed in parentheses below.
Positions of 0 are A001597.
Positions of 1 are A375704.
The version for primes is A007920 (A007918).
The opposite (greatest perfect power <= n) is A069584 (A081676).
The version for perfect powers is A074984 (this) (A377468).
The version for squarefree numbers is A081221 (A067535).
The version for non perfect powers is A378357 (A378358).
The version for nonsquarefree numbers is A378369 (A120327).
The version for prime powers is A378370 (A000015).
The version for non prime powers is A378371 (A378372).
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436.

Programs

  • Mathematica
    powerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; powerQ[1] = True; a[n_] := For[k = n, True, k++, If[powerQ[k], Return[k-n]]]; Table[a[n], {n, 1, 92}] (* Jean-François Alcover, Apr 19 2013 *)
  • PARI
    a(n) = { if (n==1, return (0)); my(nn = n); while(! ispower(nn), nn++); return (nn - n);} \\ Michel Marcus, Apr 19 2013

Formula

a(n) = A377468(n) - n. - Gus Wiseman, Dec 02 2024

A128164 Least k > 2 such that (n^k - 1)/(n-1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3
Offset: 2

Views

Author

Alexander Adamchuk, Feb 20 2007

Keywords

Comments

a(n) = A084740(n) for all n except n = p-1, where p is an odd prime, for which A084740(n) = 2.
All nonzero terms are odd primes.
a(n) = 0 for n = {4,9,16,25,32,36,49,64,81,100,121,125,144,...}, which are the perfect powers with exceptions of the form n^(p^m) where p>2 and (n^(p^(m+1))-1)/(n^(p^m)-1) are prime and m>=1 (in which case a(n^(p^m))=p). - Max Alekseyev, Jan 24 2009
a(n) = 3 for n in A002384, i.e., for n such that n^2 + n + 1 is prime.
a(152) > 20000. - Eric Chen, Jun 01 2015
a(n) is the least number k such that (n^k - 1)/(n-1) is a Brazilian prime, or 0 if no such Brazilian prime exists. - Bernard Schott, Apr 23 2017
These corresponding Brazilian primes are in A285642. - Bernard Schott, Aug 10 2017
a(152) = 270217, see the top PRP link. - Eric Chen, Jun 04 2018
a(184) = 16703, a(200) = 17807, a(210) = 19819, a(306) = 26407, a(311) = 36497, a(326) = 26713, a(331) = 25033; a(185) > 66337, a(269) > 63659, a(281) > 63421, and there are 48 unknown a(n) for n <= 1024. - Eric Chen, Jun 04 2018
Six more terms found: a(522)=20183, a(570)=12907, a(684)=22573, a(731)=15427, a(820)=12043, a(996)=14629. - Michael Stocker, Apr 09 2020

Examples

			a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - _Bernard Schott_, Apr 23 2017
		

Crossrefs

Cf. A002384, A049409, A100330, A162862, A217070-A217089. (numbers b such that (b^p-1)/(b-1) is prime for prime p = 3 to 97)
A126589 gives locations of zeros.

Programs

  • Mathematica
    Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1)
    a052410(n) = if (ispower(n, , &r), r, n)
    is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1)))
    a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410

Extensions

a(18) = 25667 found by Henri Lifchitz, Sep 26 2007

A175781 a(n) = n^(1/k) with the smallest k>1 such that n is a k-th power, taking k=1 if no such k>1 exists.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Vincenzo Librandi, Sep 03 2010

Keywords

Examples

			a(32) = 2 since the least k, in this case 5, yields 32^(1/5) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,m;
         F:= ifactors(n)[2];
         m:= igcd(op(map(t->t[2],F)));
         if m = 1 then n
         else m:= min(numtheory:-factorset(m)); mul(t[1]^(t[2]/m),t=F)
         fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 10 2018
  • Mathematica
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; f[n_] := If[ perfectPowerQ@ n, k = 2; While[ !IntegerQ[n^(1/k)], k++]; n^(1/k), n]; Array[f, 75] (* Robert G. Wilson v, Jan 09 2018 *)
  • PARI
    a(n) = my(p = ispower(n)); if (!p, n, sqrtnint(n, divisors(p)[2])); \\ Michel Marcus, Jan 02 2018

Extensions

Edited by the Associate Editors of the OEIS, Sep 03 2010
a(32) corrected by Gionata Neri, Jan 02 2018

A316112 Number of leaves in the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).

Examples

			e(21025) = o[o[o]][o] has 4 leaves so a(21025) = 4.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1];
    rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    a[n_]:=If[n==1,1,With[{g=GCD@@FactorInteger[n][[All,2]]},a[radPi[Power[n,1/g]]]+Sum[a[PrimePi[pr[[1]]]]*pr[[2]],{pr,If[g==1,{},FactorInteger[g]]}]]];
    Table[a[n],{n,100}]

Formula

a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k) where rad = A007916.

A317056 Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 3, 4, 6, 1, 4, 4, 5, 7, 2, 5, 5, 6, 3, 8, 2, 3, 6, 6, 7, 3, 4, 9, 3, 2, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 4, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 2, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 2, 7, 12
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).

Examples

			e(21025) = o[o[o]][o] has depth 3 so a(21025) = 3.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n===1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Table[Max@@Length/@Position[exp[n],_],{n,200}]
Previous Showing 31-40 of 136 results. Next