A138770
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} such that there are exactly k entries between the entries 1 and 2 (n>=2, 0<=k<=n-2).
Original entry on oeis.org
2, 4, 2, 12, 8, 4, 48, 36, 24, 12, 240, 192, 144, 96, 48, 1440, 1200, 960, 720, 480, 240, 10080, 8640, 7200, 5760, 4320, 2880, 1440, 80640, 70560, 60480, 50400, 40320, 30240, 20160, 10080, 725760, 645120, 564480, 483840, 403200, 322560, 241920, 161280, 80640
Offset: 2
T(4,2)=4 because we have 1342, 1432, 2341 and 2431.
Triangle starts:
2;
4,2;
12,8,4;
48,36,24,12;
240,192,144,96,48;
...
-
T:=proc(n,k) if n-2 < k then 0 else (2*n-2*k-2)*factorial(n-2) end if end proc; for n from 2 to 10 do seq(T(n, k),k=0..n-2) end do; # yields sequence in triangular form
-
Table[Table[2 (n - r) (n - 2)!, {r, 1, n - 1}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Dec 19 2009 *)
A159038
a(n) = 8 * n!.
Original entry on oeis.org
8, 16, 48, 192, 960, 5760, 40320, 322560, 2903040, 29030400, 319334400, 3832012800, 49816166400, 697426329600, 10461394944000, 167382319104000, 2845499424768000, 51218989645824000, 973160803270656000
Offset: 1
A256031
Number of irreducible idempotents in partial Brauer monoid PB_n.
Original entry on oeis.org
2, 3, 12, 30, 240, 840, 10080, 45360, 725760, 3991680, 79833600, 518918400, 12454041600, 93405312000, 2615348736000, 22230464256000, 711374856192000, 6758061133824000, 243290200817664000, 2554547108585472000, 102181884343418880000, 1175091669949317120000
Offset: 1
-
A256031 := proc(n)
if type(n,'odd') then
2*n! ;
else
(n+1)*(n-1)! ;
end if;
end proc:
seq(A256031(n),n=1..20) ; # R. J. Mathar, Mar 14 2015
-
a[n_] := If[OddQ[n], 2*n!, (n + 1)*(n - 1)!];
Array[a, 20] (* Jean-François Alcover, Nov 24 2017, from Maple *)
A298881
a(0) = 0; for n>0, a(n) = 6*n!.
Original entry on oeis.org
0, 6, 12, 36, 144, 720, 4320, 30240, 241920, 2177280, 21772800, 239500800, 2874009600, 37362124800, 523069747200, 7846046208000, 125536739328000, 2134124568576000, 38414242234368000, 729870602452992000, 14597412049059840000, 306545653030256640000
Offset: 0
-
Concatenation([0], List([1..25], n -> 6*Factorial(n))); # Bruno Berselli, Feb 13 2018
-
[n eq 0 select 0 else 6*Factorial(n): n in [0..25]];
-
Join[{0}, 6 Range[25]!]
-
a(n) = if (n, 6*n!, 0); \\ Michel Marcus, Feb 15 2018
A324225
Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040
Offset: 1
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices
[1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1]
[ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ]
[ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 2, 4, 6, 4, 2 ;
: 6, 12, 18, 24, 18, 12, 6 ;
: 24, 48, 72, 96, 120, 96, 72, 48, 24 ;
: 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120 ;
- Alois P. Heinz, Rows n = 1..100, flattened
- Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, and Pedro Ribeiro, Fidelity decay and error accumulation in quantum volume circuits, arXiv:2404.11444 [quant-ph], 2024. See p. 18.
- Wikipedia, Permutation
- Wikipedia, Permutation matrix
-
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t
-
T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)
A064482
Triangle read by rows: T(n,k) (n >= 2, 1<=k<=n-1) is the number of permutations p of 1,...,n with max(|p(i)-p(i-1)|, i=2..n) = k.
Original entry on oeis.org
2, 2, 4, 2, 10, 12, 2, 18, 52, 48, 2, 32, 146, 300, 240, 2, 54, 372, 1204, 1968, 1440, 2, 86, 954, 4082, 10476, 14640, 10080, 2, 134, 2376, 13348, 46012, 97968, 122400, 80640, 2, 206, 5704, 44274, 186202, 536652, 990960, 1139040, 725760, 2, 312, 13278, 145216, 742940, 2655004, 6562128, 10847520, 11692800, 7257600
Offset: 2
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 05 2001
Triangle T(n,k) begins:
2;
2, 4;
2, 10, 12;
2, 18, 52, 48;
2, 32, 146, 300, 240;
2, 54, 372, 1204, 1968, 1440;
2, 86, 954, 4082, 10476, 14640, 10080;
2, 134, 2376, 13348, 46012, 97968, 122400, 80640;
A256881
a(n) = n!/ceiling(n/2).
Original entry on oeis.org
1, 2, 3, 12, 40, 240, 1260, 10080, 72576, 725760, 6652800, 79833600, 889574400, 12454041600, 163459296000, 2615348736000, 39520825344000, 711374856192000, 12164510040883200, 243290200817664000, 4644631106519040000, 102181884343418880000, 2154334728240414720000
Offset: 1
Cf.
A009445,
A052612,
A052616,
A052849,
A081457,
A208529,
A098558,
A107991,
A110468,
A229244,
A256031.
A344901
Triangle read by rows: T(n,k) is the number of permutations of length n that have k same elements at the same positions with its inverse permutation for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 6, 8, 0, 0, 10, 24, 30, 40, 0, 0, 26, 160, 144, 180, 160, 0, 0, 76, 1140, 1120, 1008, 840, 700, 0, 0, 232, 8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764, 80864, 80892, 82080, 53760, 30240, 19656, 12768, 0, 0, 2620, 809856, 808640, 808920, 547200, 336000, 157248, 95760, 55680, 0, 0, 9496
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
2, 0, 0, 4;
6, 8, 0, 0, 10;
24, 30, 40, 0, 0, 26;
160, 144, 180, 160, 0, 0, 76;
1140, 1120, 1008, 840, 700, 0, 0, 232;
8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764;
...
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)*
binomial(n-1, j-1)*(j-1)!, j=`if`(t=1, 1..min(2, n), 3..n)))
end:
T:= (n, k)-> binomial(n, k)*b(k, 1)*b(n-k, 0):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Oct 28 2024
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[b[n-j, t]* Binomial[n-1, j-1]*(j-1)!, {j, If[t == 1, Range @ Min[2, n], Range[3, n]]}]];
T[n_, k_] := Binomial[n, k]*b[k, 1]*b[n-k, 0];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 24 2025, after Alois P. Heinz *)
A360205
Triangle read by rows. T(n, k) = (-1)^(n-k)*(k+1)*binomial(n, k)*pochhammer(1-n, n-k).
Original entry on oeis.org
1, 0, 2, 0, 4, 3, 0, 12, 18, 4, 0, 48, 108, 48, 5, 0, 240, 720, 480, 100, 6, 0, 1440, 5400, 4800, 1500, 180, 7, 0, 10080, 45360, 50400, 21000, 3780, 294, 8, 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9, 0, 725760, 4354560, 6773760, 4233600, 1270080, 197568, 16128, 648, 10
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 4, 3;
[3] 0, 12, 18, 4;
[4] 0, 48, 108, 48, 5;
[5] 0, 240, 720, 480, 100, 6;
[6] 0, 1440, 5400, 4800, 1500, 180, 7;
[7] 0, 10080, 45360, 50400, 21000, 3780, 294, 8;
[8] 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9;
-
T := (n, k) -> (-1)^(n - k)*(k + 1)*binomial(n, k)*pochhammer(1 - n, n - k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
A064484
Triangle T(n,k), n >= 2, n+1 <= k <= 2*n-1, number of permutations p of 1,...,n, with max(p(i)+p(i-1), i=2..n) = k.
Original entry on oeis.org
2, 2, 4, 4, 8, 12, 4, 32, 36, 48, 8, 64, 216, 192, 240, 8, 208, 648, 1536, 1200, 1440, 16, 416, 3024, 6144, 12000, 8640, 10080, 16, 1280, 9072, 37632, 60000, 103680, 70560, 80640, 32, 2560, 38880, 150528, 456000, 622080, 987840, 645120, 725760
Offset: 2
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 05 2001
For n=3 we have:
T(3,4)=2 with the permutations {312, 213} and
T(3,5)=4 with {123, 321, 132, 231}.
-
T[n_ /; n >= 2, k_] /; n+1 <= k <= 2n-1 := T[n, k] = If[EvenQ[k], (k-n)* T[n-1, k-1], (k-n+1)*T[n-1, k-1] + 2*Sum[T[n-1, i], {i, n, k-2}]];
T[1, 2] = 1; T[, ] = 0;
Table[T[n, k], {n, 2, 10}, {k, n+1, 2n-1}] // Flatten (* Jean-François Alcover, Jul 19 2022 *)
-
# Generate n-th row (n>1) by checking all n! permutations
from itertools import permutations
def onerow(n):
row=[0]*(n-1)
for i in permutations(range(1, n+1)):
row[max([j[0]+j[1] for j in zip(i, i[1:])])-n-1]+=1
return row
# Andrew Woods, Jun 18 2013
-
# Generate first twenty rows using recurrence
rows=[[2]]; row=[2]
for i in range(19):
row=[(row[j]*(j+2)+sum(row[:j])*2) if (i+j)%2==1 else row[j]*(j+1) for j in range(i+1)]+[row[-1]*(i+2)]
rows.append(row)
# Andrew Woods, Jun 18 2013
Comments