A367163
E.g.f. satisfies A(x) = 1 + A(x)^3 * (exp(x*A(x)) - 1).
Original entry on oeis.org
1, 1, 9, 160, 4367, 161796, 7592593, 431826760, 28875060411, 2220199609420, 193010401410437, 18720726373805952, 2004328775014537111, 234797380878372574276, 29873926565253226992921, 4102473564838214815027576, 604804589755948599369229811
Offset: 0
-
a(n) = sum(k=0, n, (n+3*k)!/(n+2*k+1)!*stirling(n, k, 2));
A258923
E.g.f. satisfies A(x) = 1/(4 - 3*exp(x*A(x))).
Original entry on oeis.org
1, 3, 39, 948, 34401, 1671708, 102120555, 7525926516, 650110587933, 64441071121980, 7211152872419151, 899320094627287908, 123696462771198530265, 18603242077944140548428, 3037136136248214142833747, 534943432937469380612083284, 101114708570035662524213928981, 20416341060201627868414787791068
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 39*x^2/2! + 948*x^3/3! + 34401*x^4/4! + 1671708*x^5/5! +...
where A(4*x - 3*x*exp(x)) = 1/(4 - 3*exp(x)).
-
CoefficientList[1/x*InverseSeries[Series[4*x - 3*x*E^x, {x, 0, 21}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=1); A = (1/x)*serreverse(4*x - 3*x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A370894
Expansion of e.g.f. (1/x) * Series_Reversion( x*(3 - exp(2*x))/2 ).
Original entry on oeis.org
1, 1, 6, 64, 1016, 21576, 575680, 18525088, 698625408, 30229271680, 1476535180544, 80371762466304, 4824793854177280, 316685993746640896, 22563822118152880128, 1734427247284290015232, 143072322233503079038976, 12606854482934004152303616
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(3-exp(2*x))/2)/x))
-
a(n) = sum(k=0, n, 2^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;
A370934
Expansion of e.g.f. (1/x) * Series_Reversion( x*(4 - exp(3*x))/3 ).
Original entry on oeis.org
1, 1, 7, 84, 1497, 35676, 1067931, 38548980, 1630600677, 79132611420, 4334891782095, 264625534657188, 17815224081030129, 1311349332273617196, 104778837463344022179, 9031998822763725245268, 835500403485829779202557, 82557790782397502710806396
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(4-exp(3*x))/3)/x))
-
a(n) = sum(k=0, n, 3^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;
A370990
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^3*(exp(x) - 1)) ).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 120, 210, 201936, 1996344, 12701520, 64865790, 17053788840, 374788816116, 4944496679304, 50034166184730, 6390396135006240, 239770550508132720, 5363062998193560096, 89908444484550625014, 7402557588108228698040
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^3*(exp(x)-1)))/x))
-
a(n) = sum(k=0, n\4, (n+k)!*stirling(n-3*k, k, 2)/(n-3*k)!)/(n+1);
A375897
E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/2)))^2.
Original entry on oeis.org
1, 2, 12, 122, 1780, 34082, 810740, 23093562, 767175972, 29140904402, 1246366394548, 59292772664666, 3106206974812292, 177715679350850370, 11026719500616041076, 737552919428497318394, 52907911316906095281508, 4051998061642112552244722
Offset: 0
-
Table[2/(n+2)! * Sum[(n + k + 1)!*StirlingS2[n, k], {k, 0, n} ], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^2))
-
a(n) = 2*sum(k=0, n, (n+k+1)!*stirling(n, k, 2))/(n+2)!;
A375898
E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/3)))^3.
Original entry on oeis.org
1, 3, 21, 234, 3627, 72498, 1780953, 52013118, 1762754655, 68060512458, 2950869169125, 142006584810918, 7513205987292243, 433548334132153698, 27102592662130603857, 1824854382978573444174, 131676307468686605671623, 10137713081262046098901050
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^3))
-
a(n) = 3*sum(k=0, n, (n+k+2)!*stirling(n, k, 2))/(n+3)!;
A377424
E.g.f. satisfies A(x) = 1/(2 - exp(x*A(x)^4)).
Original entry on oeis.org
1, 1, 11, 253, 9019, 438021, 26992707, 2018069341, 177498369419, 17959376607061, 2055112480694323, 262437681414074541, 36999068388057870651, 5708040382071000644581, 956533539112835413864739, 173022072326584494697760893, 33600521994423195247370822251, 6972639514725247888782370422261
Offset: 0
-
a(n) = sum(k=0, n, (4*n+k)!*stirling(n, k, 2))/(4*n+1)!;
A377428
Expansion of e.g.f. (1/x) * Series_Reversion( x*(2 - exp(x))^4 ).
Original entry on oeis.org
1, 4, 56, 1432, 54184, 2734104, 173032680, 13192623448, 1177932112040, 120610734752920, 13935516914366824, 1793837540679492312, 254604546529825454376, 39504947952102355425304, 6652925600854130108675048, 1208610940763303680263653464, 235601431979292206398224418216
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(2-exp(x))^4)/x))
-
a(n) = 4*sum(k=0, n, (4*n+k+3)!*stirling(n, k, 2))/(4*n+4)!;
A000763
Number of interval orders constructed from n intervals of generic lengths.
Original entry on oeis.org
1, 3, 19, 195, 2831, 53703, 1264467, 35661979, 1173865927, 44218244943, 1877050837355, 88693432799667, 4618194424504623, 262771389992099719, 16223185411792992403, 1080238361814167993739, 77171781603974127429527
Offset: 1
- Vincenzo Librandi, Jean-François Alcover and Bruno Berselli, Table of n, a(n) for n = 1..100 (up to n = 21 from _Vincenzo Librandi_, up to n = 40 from _Jean-François Alcover_)
-
seq(n! * coeff(series(exp(int(RootOf(2*Z-_Z*exp(x*_Z)-1)^2, x)), x, n+1), x, n), n = 1..20); # _Vaclav Kotesovec, Mar 21 2016
-
A000763[max_] := ( e[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 1; c[1] = 1; y[x_] := Sum[d[k]*x^k, {k, 0, max}]; d[0] = 1; d[1] = 1; cc = CoefficientList[ Series[ e'[x]/e[x] - y[x]^2, {x, 0, max}], x]; dd = CoefficientList[ Series[ y[x]*(2 - Exp[x*y[x]]) - 1, {x, 0, max}], x]; eqdd = Thread[dd == 0]; soldd = Solve[ Thread[dd == 0] ]; eqcc = Thread[(cc /. soldd[[1]]) == 0]; solcc = Solve[ Most[eqcc] ] ; solcc /. Rule -> Set; soldd /. Rule -> Set; Table[c[k], {k, 1, max}] *Range[max]! ); Do[A000763[max], {max, 5, 40, 5}]; A000763[40] (* Jean-François Alcover, Jul 23 2013 *)
-
seq(n)={my(p=serreverse(2*x - x*exp(x + O(x^n)))/x); Vec(serlaplace(exp( intformal(p^2) )))} \\ Andrew Howroyd, Jun 05 2021