A267667 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in row-major sequential order.
1, 2, 2, 3, 8, 4, 5, 18, 32, 7, 7, 50, 108, 98, 12, 11, 98, 500, 453, 288, 20, 15, 242, 1372, 3143, 1800, 800, 33, 23, 450, 5324, 10933, 18432, 6654, 2178, 54, 31, 1058, 13500, 60401, 80404, 98438, 23967, 5832, 88, 47, 1922, 48668, 188301, 624476, 528980
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..0..1....0..1..1..0....0..0..1..0....0..1..0..1....0..1..1..0 ..0..0..1..1....0..0..1..1....1..0..1..1....1..1..0..0....0..0..1..1 ..1..1..0..0....0..0..1..1....0..1..1..0....0..0..1..1....1..0..1..0 ..0..1..0..1....1..0..0..1....1..0..0..1....0..1..0..0....0..0..1..0 ..0..1..0..1....0..0..1..1....1..0..1..0....0..0..1..1....0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..179
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -6*a(n-3) +4*a(n-4) +2*a(n-5) -a(n-6)
k=3: [order 16]
k=4: [order 80]
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
n=2: a(n) = a(n-1) +6*a(n-2) -6*a(n-3) -8*a(n-4) +8*a(n-5)
n=3: a(n) = a(n-1) +14*a(n-2) -14*a(n-3) -56*a(n-4) +56*a(n-5) +64*a(n-6) -64*a(n-7)
n=4: [order 21]
n=5: [order 96]
Comments