A185331
Riordan array ((1-x+x^2)/(1+x^2), x/(1+x^2)).
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -1, 1, 3, -3, -1, 1, 0, -3, 3, 4, -4, -1, 1, 1, -1, -6, 6, 5, -5, -1, 1, 0, 4, -4, -10, 10, 6, -6, -1, 1, -1, 1, 10, -10, -15, 15, 7, -7, -1, 1, 0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1
Offset: 0
Triangle begins:
1;
-1, 1;
0, -1, 1;
1, -1, -1, 1;
0, 2, -2, -1, 1;
-1, 1, 3, -3, -1, 1;
0, -3, 3, 4, -4, -1, 1;
1, -1, -6, 6, 5, -5, -1, 1;
0, 4, -4, -10, 10, 6, -6, -1, 1;
-1, 1, 10, -10, -15, 15, 7, -7, -1, 1;
0, -5, 5, 20, -20, -21, 21, 8, -8, -1, 1;
1, -1, -15, 15, 35, -35, -28, 28, 9, -9, -1, 1;
-
CoefficientList[Series[CoefficientList[Series[(1 - x + x^2)/(1 - y*x + x^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 27 2017 *)
A217478
Triangle of coefficients of polynomials providing the second term of the numerator for the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;1,x^2).
Original entry on oeis.org
-2, 3, -4, -4, 10, -6, 5, -20, 21, -8, -6, 35, -56, 36, -10, 7, -56, 126, -120, 55, -12, -8, 84, -252, 330, -220, 78, -14, 9, -120, 462, -792, 715, -364, 105, -16, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 1
The triangle a(m,k) begins:
m\k 0 1 2 3 4 5 6 7 8 9 ...
1: -2
2: 3 -4
3: -4 10 -6
4: 5 -20 21 -8
5: -6 35 -56 36 -10
6: 7 -56 126 -120 55 -12
7: 8 84 -252 330 -220 78 -14
8: 9 -120 462 -792 715 -364 105 -16
9: -10 165 -792 1716 -2002 1365 -560 136 -18
10: 11 -220 1287 -3432 5005 -4368 2380 -816 171 -20
...
P(2;1,x^2) = 3 - 4*x^2, appears in the second term of the numerator of the o.g.f. for S(n,x)^5 which is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + ((-x*z)^2)*2*(-4 +3*x^2). The last term is taken from row m=2 of A217479. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). This checks with [1,x^5,-1+5*x^2-10*x^4+10*x^6-5*x^8
+x^10,-32*x^5+80*x^7-80*x^9+40*x^11-10* x^13+x^15,...] for S(n,x)^5, n=0,1,2,3,...
A285072
Triangle read by rows: coefficients of the Laplacian polynomial of the n-path graph P_n.
Original entry on oeis.org
0, -1, 0, -2, 1, 0, -3, 4, -1, 0, -4, 10, -6, 1, 0, -5, 20, -21, 8, -1, 0, -6, 35, -56, 36, -10, 1, 0, -7, 56, -126, 120, -55, 12, -1, 0, -8, 84, -252, 330, -220, 78, -14, 1, 0, -9, 120, -462, 792, -715, 364, -105, 16, -1, 0, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1
Offset: 1
Table starts:
0
-1 0
-2 1 0
-3 4 -1 0
-4 10 -6 1 0
-5 20 -21 8 -1 0
-6 35 -56 36 -10 1 0
-7 56 -126 120 -55 12 -1 0
-8 84 -252 330 -220 78 -14 1 0
-9 120 -462 792 -715 364 -105 16 -1 0
Cf.
A053122 (version lacking row-ending 0's and with differing signs).
-
S := proc(n, k) option remember;
if n <= k then 0 elif k = 0 then (-1)^n*n
else S(n-1, k-1) - S(n-2, k) - 2*S(n-1, k) fi end:
T := (n, k) -> (-1)^(n+1)*S(n, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Apr 03 2020
-
CoefficientList[Table[CharacteristicPolynomial[KirchhoffMatrix[PathGraph[Range[n]]], x], {n, 10}], x] // Flatten
CoefficientList[LinearRecurrence[{2 - x, -1}, {-x, (-2 + x) x}, 10], x] // Flatten
CoefficientList[Table[(-1)^(n + 1) x^(1/2) ChebyshevU[2 n - 1, -Sqrt[x]/2], {n, 10}], x] // Flatten
CoefficientList[Table[(2^-n ((2 - Sqrt[-4 + x] Sqrt[x] - x)^n - (2 + Sqrt[-4 + x] Sqrt[x] - x)^n))/Sqrt[(-4 + x)/x], {n, 10}] // Expand // FullSimplify, x] // Flatten
T[n_,k_]:=(-1)^(k+1)*Binomial[n+k,2*k+1];Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)
-
# uses[riordan_square from A321620]
# Returns the triangle as a matrix.
riordan_square(-x/(1 - x)^2, 9) # Peter Luschny, Apr 03 2020
A136321
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=5;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, -1, -4, 1, 4, 6, -6, 1, -7, -4, 17, -8, 1, 10, -5, -32, 32, -10, 1, -13, 24, 42, -88, 51, -12, 1, 16, -56, -28, 186, -180, 74, -14, 1, -19, 104, -42, -312, 495, -316, 101, -16, 1, 22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1, -25, 260, -561, -264, 2145, -2912, 1960, -752, 167, -20, 1
Offset: 1
{1},
{-2, 1},
{-1, -4, 1},
{4, 6, -6, 1},
{-7, -4, 17, -8, 1},
{10, -5, -32, 32, -10, 1},
{-13, 24, 42, -88,51, -12, 1},
{16, -56, -28,186, -180, 74, -14, 1},
{-19, 104, -42, -312, 495, -316, 101, -16, 1},
{22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1},
{-25, 260, -561, -264,2145, -2912, 1960, -752, 167, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x - 1; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
A136329
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=4;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, 0, -4, 1, 2, 7, -6, 1, -4, -8, 18, -8, 1, 6, 5, -38, 33, -10, 1, -8, 4, 63, -96, 52, -12, 1, 10, -21, -84, 222, -190, 75, -14, 1, -12, 48, 84, -432, 550, -328, 102, -16, 1, 14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1, -16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1
Offset: 1
{1},
{-2, 1},
{0, -4, 1},
{2, 7, -6, 1},
{-4, -8, 18, -8, 1},
{6, 5, -38, 33, -10,1},
{-8, 4, 63, -96, 52, -12, 1},
{10, -21, -84, 222, -190, 75, -14, 1},
{-12, 48, 84, -432, 550, -328, 102, -16, 1},
{14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1},
{-16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x ; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
A136672
Riordan array ((1+x^2)/(1-x)^2, -x/(1-x)^2).
Original entry on oeis.org
1, 2, -1, 4, -4, 1, 6, -11, 6, -1, 8, -24, 22, -8, 1, 10, -45, 62, -37, 10, -1, 12, -76, 147, -128, 56, -12, 1, 14, -119, 308, -366, 230, -79, 14, -1, 16, -176, 588, -912, 770, -376, 106, -16, 1, 18, -249, 1044, -2046, 2222, -1443, 574, -137, 18, -1, 20, -340, 1749, -4224, 5720, -4732, 2485, -832, 172, -20, 1
Offset: 1
{1},
{2, -1},
{4, -4, 1},
{6, -11, 6, -1},
{8, -24, 22, -8, 1},
{10, -45, 62, -37, 10, -1},
{12, -76, 147, -128, 56, -12, 1},
{14, -119,308, -366, 230, -79, 14, -1},
{16, -176, 588, -912, 770, -376, 106, -16, 1},
{18, -249, 1044, -2046, 2222, -1443, 574, -137, 18, -1},
{20, -340, 1749, -4224, 5720, -4732, 2485, -832, 172, -20, 1}
-
T[n_, m_, d_] := If[ n == m, 2, If[n == d && m == d - 1, 0, If[(n == m - 1 || n == m + 1), -1, 0]]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; Table[Det[M[d]], {d, 1, 10}]; Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]],x], {d, 1, 10}]]; Flatten[a] (* polynomial recursion*) Clear[p] p[x, 0] = 1; p[x, 1] = (2 - x); p[x, 2] = 4 - 4 x + x^2; p[x_, n_] := p[x, n] = (2 - x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, Length[g] - 1}]
p[t_] = (2 - x)/(1 - (2 - x)*t + t^2); Table[ ExpandAll[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
{1} ~ Join ~ CoefficientList[Table[(2 - x) ChebyshevU[n - 2, 1 - x/2], {n, 2, 10}], x] // Flatten (* Eric W. Weisstein, May 10 2017 *)
Comments