cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A189393 a(n) = phi(n^4).

Original entry on oeis.org

1, 8, 54, 128, 500, 432, 2058, 2048, 4374, 4000, 13310, 6912, 26364, 16464, 27000, 32768, 78608, 34992, 123462, 64000, 111132, 106480, 267674, 110592, 312500, 210912, 354294, 263424, 682892, 216000, 893730, 524288, 718740, 628864, 1029000, 559872
Offset: 1

Views

Author

Vincenzo Librandi, Apr 21 2011

Keywords

Crossrefs

Cf. A002618 (phi(n^2)), A053191 (phi(n^3)), A238533 (phi(n^5)), A239442 (phi(n^7)), A239443 (phi(n^9)).

Programs

  • Magma
    [ n^3*EulerPhi(n) : n in [1..100] ]
    
  • Mathematica
    EulerPhi[Range[100]^4] (* T. D. Noe, Dec 27 2011 *)
  • PARI
    vector(66,n,n^3*eulerphi(n))  /* Joerg Arndt, Apr 22 2011 */

Formula

a(n) = n^3*phi(n).
Dirichlet g.f.: zeta(s - 4) / zeta(s - 3). The n-th term of the Dirichlet inverse is n^3 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 6*n^5 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^5 - p^4 - p + 1)) = 1.15762316629211803144... - Amiram Eldar, Dec 06 2020

A239441 Number of invertible octonions over Z/nZ.

Original entry on oeis.org

1, 128, 4320, 32768, 312000, 552960, 4939200, 8388608, 28343520, 39936000, 194858400, 141557760, 752955840, 632217600, 1347840000, 2147483648, 6565340160, 3627970560, 16089567840, 10223616000, 21337344000, 24941875200, 74905892160, 36238786560, 121875000000, 96378347520
Offset: 1

Views

Author

Keywords

Comments

Number of octonions over Z/nZ with invertible norm; i.e., number of solutions of the equation gcd(x_1^2 + ... + x_8^2, n)=1 with 0 < x_i <= n.

Crossrefs

Sequences giving the number of solutions to the equation gcd(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).

Programs

  • Mathematica
    fa=FactorInteger;lon[n_]:=Length[fa[n]];Phi[k_, n_] := Which[Mod[k, 2] == 1, n^(k - 1)*EulerPhi[n], Mod[k, 4] ==0, n^(k - 1)*EulerPhi[n]*Product[1 - 1/fa[2n][[i, 1]]^(k/2), {i, 2, lon[2 n]}],True, n^(k - 1)*EulerPhi[n]*Product[Which[ Mod[fa[ n][[i, 1]], 4] == 3 , 1 + 1/fa[ n][[i, 1]]^(k/2), Mod[fa[ n][[i, 1]], 4] == 1, 1 - 1/fa[ n][[i, 1]]^(k/2), True, 1], {i, 1, lon[ n]}]]; Table[Phi[8,n],{n,1,100}]
    f[p_, e_] := (p-1)*p^(8*e-1) * If[p == 2, 1, 1 - 1/p^4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^8)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(8*e-1), (p - 1)*p^(8*e - 5)*(p^4 - 1)))} \\ Andrew Howroyd, Aug 06 2018

Formula

Multiplicative with a(2^e) = 2^(8*e-1), a(p^e) = (p - 1)*p^(8*e - 5)*(p^4 - 1) for odd prime p. - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^9, where c = (16/141) * Product_{p prime} (1 - 1/p^2 - 1/p^5 + 1/p^6) = 0.06731687367... . - Amiram Eldar, Nov 30 2022
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-8) * (1 - 1/2^(s-7)) * Product_{p prime > 2} (1 - 1/p^(s-7) - (p-1)/p^(s-3)).
Sum_{n>=1} 1/a(n) = (257*Pi^14/1312151400) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^9 + 1/p^10 + 1/p^12 - 1/p^14) = 1.00807991170717322545... . (End)

A239611 a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).

Original entry on oeis.org

1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2,n) == 1, s += gcd(x^2+y^2-1,n)););); s;} \\ Michel Marcus, Jun 29 2014

A239612 a(n) = Sum_{0 < x,y,z <= n and gcd(x^2 + y^2 + z^2, n)=1} gcd(x^2 + y^2 + z^2 - 1, n).

Original entry on oeis.org

1, 8, 30, 112, 220, 240, 546, 1280, 1134, 1760, 2310, 3360, 4212, 4368, 6600, 13312, 9520, 9072, 12654, 24640, 16380, 18480, 22770, 38400, 42500, 33696, 39366, 61152, 47908, 52800, 56730, 131072, 69300, 76160, 120120, 127008, 99900, 101232, 126360, 281600
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g3[n_] := Sum[If[GCD[x^2 + y^2 + z^2, n] == 1, GCD[x^2 + y^2 + z^2 - 1, n], 0],{x, 1, n},{y, 1, n},{z,1,n}]; Array[g3,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, if (gcd(x^2+y^2+z^2,n) == 1, s += gcd(x^2+y^2+z^2-1,n));););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239613 a(n) = Sum_{0 < x,y,z,t <= n and gcd(x^2 + y^2 + z^2 + t^2, n)=1} gcd(x^2 + y^2 + z^2 + t^2 - 1, n).

Original entry on oeis.org

1, 16, 96, 384, 960, 1536, 4032, 8192, 11664, 15360, 26400, 36864, 52416, 64512, 92160, 163840, 156672, 186624, 246240, 368640, 387072, 422400, 534336, 786432, 900000, 838656, 1259712, 1548288, 1364160, 1474560, 1785600, 3145728
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g4[n_] := Sum[If[GCD[x^2 + y^2+ z^2+ t^2, n] == 1, GCD[x^2 + y^2+ z^2+ t^2 - 1, n], 0], {x, 1, n}, {y, 1, n},{z,1,n},{t,1,n}]; Array[g4,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, for (t=1, n, if (gcd(x^2+y^2+z^2+t^2,n) == 1, s += gcd(x^2+y^2+z^2+t^2-1,n)););););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^4)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239614 a(n) = A239611(n) / A079458(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 8, 2, 6, 2, 8, 4, 4, 2, 12, 3, 4, 4, 8, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 12, 2, 8, 2, 8, 6, 4, 2, 16, 3, 6, 4, 8, 2, 8, 4, 12, 4, 4, 2, 16, 2, 4, 6, 12, 4, 8, 2, 8, 4, 8, 2, 18, 2, 4, 6, 8, 4, 8, 2, 16, 5, 4, 2, 16, 4, 4, 4, 12, 2, 12, 4, 8, 4, 4, 4, 20, 2, 6, 6, 12, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239611 and A079458 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a239611[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}];
    a079458[n_] := Product[{p, e} = pe; Which[p==2, 2^(2e-1), Mod[p, 4]==3, (p^2-1)p^(2e-2), Mod[p, 4]==1, (p-1)^2 p^(2e-2)], {pe, FactorInteger[n]}];
    a[1] = 1; a[n_] := a239611[n]/a079458[n];
    Array[a, 105] (* Jean-François Alcover, Dec 04 2018 *)

Formula

Conjectures from Ridouane Oudra, Jul 22 2024: (Start)
a(n) = A010710(n)*tau(n) - 2*tau(2n) ;
a(2*n) = 2*tau(n) ;
a(2*n+1) = tau(2*n+1). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017

A074466 a(n) = gcd(n^3, sigma(n^3), phi(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 24, 1, 1, 1, 20, 1, 8, 1, 8, 15, 1, 1, 3, 1, 4, 1, 8, 1, 24, 1, 4, 1, 16, 1, 1800, 1, 1, 3, 4, 25, 1, 1, 8, 1, 4, 1, 24, 1, 8, 3, 8, 1, 8, 1, 5, 9, 4, 1, 12, 1, 16, 1, 4, 1, 480, 1, 8, 1, 1, 65, 72, 1, 4, 3, 200, 1, 3, 1, 4, 5, 8, 1, 24, 1, 4, 1, 4, 1, 64, 5, 8, 3, 88, 1, 180, 7, 16, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Examples

			n=10: gcd[1000,2340,400] = 20 = a(10).
		

Crossrefs

Programs

  • Magma
    [Gcd(n^3, Gcd(SumOfDivisors(n^3), EulerPhi(n^3))): n in [1..100]]; // Vincenzo Librandi, Sep 20 2018
  • Mathematica
    Table[Apply[GCD, {w^3, DivisorSigma[1, w^3], EulerPhi[w^3]}], {w, 1, 128}]
    GCD[#,DivisorSigma[1,#],EulerPhi[#]]&/@(Range[100]^3) (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    A074466(n) = gcd([n^3, sigma(n^3), eulerphi(n^3)]); \\ Antti Karttunen, Sep 07 2018
    

Formula

a(n) = A074389(n^3).

A306411 a(n) = phi(n^6) = n^5*phi(n).

Original entry on oeis.org

1, 32, 486, 2048, 12500, 15552, 100842, 131072, 354294, 400000, 1610510, 995328, 4455516, 3226944, 6075000, 8388608, 22717712, 11337408, 44569782, 25600000, 49009212, 51536320, 141599546, 63700992, 195312500, 142576512, 258280326, 206524416, 574312172, 194400000, 858874530, 536870912, 782707860, 726966784
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Comments

The number of elements of the wreath product of C_n and S_6 with cycle partition equal to (6*n) is equal to 5!*a(n), where C_n is the cyclic group of order n, S_6 the symmetric group on 6 elements. - Josaphat Baolahy, Mar 13 2024

Crossrefs

Eulerphi(n^e): A000010 (e=1), A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), this sequence (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).

Programs

  • Mathematica
    Array[EulerPhi[#] #^5 &, 34] (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    a(n) = n^5 * eulerphi(n)

Formula

Multiplicative with a(p^e) = (p - 1)*p^(6*e-1).
Dirichlet g.f.: zeta(s - 6) / zeta(s - 5).
Sum_{k=1..n} a(k) ~ 6*n^7 / (7*Pi^2). See A239443 for a more general formula.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p/(p^7 - p^6 - p + 1)) = 1.03396580456393429553879930771676667947490034699829164744357501993310897305... - Vaclav Kotesovec, Sep 20 2020

A306412 a(n) = phi(n^8) = n^7*phi(n).

Original entry on oeis.org

1, 128, 4374, 32768, 312500, 559872, 4941258, 8388608, 28697814, 40000000, 194871710, 143327232, 752982204, 632481024, 1366875000, 2147483648, 6565418768, 3673320192, 16089691302, 10240000000, 21613062492, 24943578880, 74906159834, 36691771392, 122070312500
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Crossrefs

Eulerphi(n^e): A000010 (e=1), A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), this sequence (e=8), A239443 (e=9).

Programs

  • Mathematica
    Table[n^7*EulerPhi[n], {n, 1, 25}] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    a(n) = n^7 * eulerphi(n)

Formula

Multiplicative with a(p^e) = (p - 1)*p^(8*e-1).
Dirichlet g.f.: zeta(s - 8) / zeta(s - 7).
Sum_{k=1..n} a(k) ~ 2*n^9 / (3*Pi^2). See A239443 for a more general formula.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^9 - p^8 - p + 1)) = 1.00807702579309679541... - Amiram Eldar, Dec 06 2020

A053198 Totients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 6, 8, 20, 18, 16, 42, 32, 54, 110, 100, 64, 156, 162, 128, 272, 294, 342, 256, 506, 500, 486, 812, 930, 512, 1210, 1332, 1640, 1806, 1024, 1458, 2028, 2162, 2058, 2756, 2500, 3422, 3660, 2048, 4422, 4624, 4970, 5256, 6162, 4374, 6498, 6806, 7832, 4096
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Totients of prime powers are prime powers only for powers of 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = EulerPhi(81) = 54.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[2^13], CompositeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Dec 21 2020 *)

Formula

a(n) = A000010(A025475(n+1)).
Numbers of the form phi(p^k) = (p-1)*p^(k-1), where p is prime and k > 1.
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p-1)^2 = A086242 = 1.3750649947... - Amiram Eldar, Dec 21 2020
Previous Showing 11-20 of 26 results. Next