cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 86 results. Next

A377432 Number of perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Between prime(4) = 7 and prime(5) = 11 we have perfect-powers 8 and 9, so a(4) = 2.
		

Crossrefs

For prime-powers instead of perfect-powers we have A080101.
Non-perfect-powers in the same range are counted by A377433.
Positions of 1 are A377434.
Positions of 0 are A377436.
Positions of terms > 1 are A377466.
For powers of 2 instead of primes we have A377467, for prime-powers A244508.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],perpowQ]],{n,100}]

Formula

a(n) + A377433(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A376562 Second differences of consecutive non-perfect-powers (A007916). First differences of A375706.

Original entry on oeis.org

1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros are A376588, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376588 (inflections and undulations), A376589 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ],2]
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A376562(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r = m+((k:=next(i for i in count(1) if not perfect_power(m+i)))<<1)
        return next(i for i in count(1-k) if not perfect_power(r+i)) # Chai Wah Wu, Oct 02 2024

A377281 Difference between the n-th prime and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 4, 2, 2, 1, 4, 2, 4, 2, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 1, 6, 2, 10, 2, 6, 6, 4, 2, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 5, 6, 6, 2, 6, 4, 2, 6, 14, 4, 2, 4, 14, 6, 6, 2, 4, 6, 2, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The twelfth prime is 37, with next prime-power 41, so a(12) = 4.
		

Crossrefs

For prime instead of prime-power we have A001223.
For powers of two instead of primes we have A013597, A014210, A014234, A244508, A304521.
This is the restriction of A377282 to the prime numbers.
For previous instead of next prime-power we have A377289, restriction of A276781.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.
A246655 lists the prime-powers not including 1.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n]+1,!PrimePowerQ[#]&]-Prime[n],{n,100}]
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A377281(n): return -(p:=prime(n))+next(filter(lambda m:len(factorint(m))<=1, count(p+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(prime(n)) - prime(n).
a(n) = A345531(n) - prime(n).
a(n) = A377282(prime(n)).

A375735 First differences of non-prime-powers (inclusive).

Original entry on oeis.org

4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

Inclusive means 1 is a prime-power but not a non-prime-power.
Non-prime-powers (inclusive) are listed by A024619.

Examples

			The 5th non-prime-power (inclusive) is 15, and the 6th is 18, so a(5) = 3.
		

Crossrefs

For perfect powers (A001597) we have the latter terms of A053289.
For nonprime numbers (A002808) we have the latter terms of A073783.
For squarefree numbers (A005117) we have the latter terms of A076259.
First differences of A024619.
For prime-powers (A246655) we have the latter terms of A057820.
Essentially the same as the exclusive version, A375708.
Positions of 1's are A375713(n) - 1.
For runs of non-prime-powers:
- length: A110969
- first: A373676
- last: A373677
- sum: A373678
A000040 lists all of the primes, first differences A001223.
A000961 lists prime-powers (inclusive).
A007916 lists non-perfect-powers, first differences A375706.
A013929 lists the nonsquarefree numbers, first differences A078147.
A246655 lists prime-powers (exclusive).
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power anti-runs: A373576, min A120430, max A006549, length A373671.
Non-prime-power anti-runs: A373679, min A373575, max A255346, len A373672.

Programs

  • Mathematica
    Differences[Select[Range[2,100],!PrimePowerQ[#]&]]
  • Python
    from itertools import count
    from sympy import primepi, integer_nthroot, primefactors
    def A375735(n):
        def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if len(primefactors(i))>1)-m # Chai Wah Wu, Sep 10 2024

A065310 Number of occurrences of n-th prime in A065308, where A065308(j) = prime(j - pi(j)).

Original entry on oeis.org

3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

Seems identical to A054546. Each odd prime arises once or twice!?
First differences of A018252 (positive nonprime numbers). Including 0 gives A054546. Removing 1 gives A073783. - Gus Wiseman, Sep 15 2024

Crossrefs

For twin 2's see A169643.
Positions of 1's are A375926, complement A014689 (except first term).
Other families of numbers and their first-differences:
For prime numbers (A000040) we have A001223.
For composite numbers (A002808) we have A073783.
For nonprime numbers (A018252) we have A065310 (this).
For perfect powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
For squarefree numbers (A005117) we have A076259.
For nonsquarefree numbers (A013929) we have A078147.
For prime-powers inclusive (A000961) we have A057820.
For prime-powers exclusive (A246655) we have A057820(>1).
For non-prime-powers inclusive (A024619) we have A375735.
For non-prime-powers exclusive (A361102) we have A375708.

Programs

  • Mathematica
    t=Table[Prime[w-PrimePi[w]], {w, a, b}] Table[Count[t, Prime[n]], {n, c, d}]
    Differences[Select[Range[100],!PrimeQ[#]&]] (* Gus Wiseman, Sep 15 2024 *)
  • PARI
    { p=1; f=2; m=1; for (n=1, 1000, a=0; p=nextprime(p + 1); while (p==f, a++; m++; f=prime(m - primepi(m))); write("b065310.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 16 2009

A377282 Difference between n and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 2, 1, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The next prime-power after 13 is 16, so a(12) = 3.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A244508, A304521.
For prime instead of prime-power we have A013632.
For previous instead of next prime-power we have A276781, restriction A377289.
The restriction to the prime numbers is A377281.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n+1,!PrimePowerQ[#]&]-n,{n,100}]
  • Python
    from itertools import count
    from sympy import factorint
    def A377282(n): return next(filter(lambda m:len(factorint(m))<=1, count(n+1)))-n # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(n) - n + 1 for n > 1.
a(prime(n)) = A377281(n).

A377434 Numbers k such that there is a unique perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

2, 6, 15, 18, 22, 25, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 329, 342, 357, 367, 378, 393, 400
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains two perfect-powers (8,9), so 4 is not in the sequence.
Primes 5 and 6 are 11 and 13, and the interval (12) contains no perfect-powers, so 5 is not in the sequence.
Primes 6 and 7 are 13 and 17, and the interval (14,15,16) contains just one perfect-power (16), so 6 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A377467.
For prime-powers we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360.
These are the positions of 1 in A377432.
For no perfect-powers we have A377436.
For more than one perfect-power we have A377466.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A031218 gives the greatest prime-power <= n.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A345531 gives the least prime-power > prime(n), difference A377281.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]==1&]

A074981 Conjectured list of positive numbers which are not of the form r^i - s^j, where r,s,i,j are integers with r>0, s>0, i>1, j>1.

Original entry on oeis.org

6, 14, 34, 42, 50, 58, 62, 66, 70, 78, 82, 86, 90, 102, 110, 114, 130, 134, 158, 178, 182, 202, 206, 210, 226, 230, 238, 246, 254, 258, 266, 274, 278, 290, 302, 306, 310, 314, 322, 326, 330, 358, 374, 378, 390, 394, 398, 402, 410, 418, 422, 426
Offset: 1

Views

Author

Zak Seidov, Oct 07 2002

Keywords

Comments

This is a famous hard problem and the terms shown are only conjectured values.
The terms shown are not the difference of two powers below 10^19. - Don Reble
One can immediately represent all odd numbers and multiples of 4 as differences of two squares. - Don Reble
_Ed Pegg Jr_ remarks (Oct 07 2002) that the techniques of Preda Mihailescu (see MathWorld link) might make it possible to prove that 6, 14, ... are indeed members of this sequence.
Numbers n such that there is no solution to Pillai's equation. - T. D. Noe, Oct 12 2002
The terms shown are not the difference of two powers below 10^27. - Mauro Fiorentini, Jan 03 2020

Examples

			Examples showing that certain numbers are not in the sequence: 10 = 13^3 - 3^7, 22 = 7^2 - 3^3, 29 = 15^2 - 14^2, 31 = 2^5 - 1, 52 = 14^2 - 12^2, 54 = 3^4 - 3^3, 60 = 2^6 - 2^2, 68 = 10^2 - 2^5, 72 = 3^4 - 3^2, 76 = 5^3 - 7^2, 84 = 10^2 - 2^4, ... 342 = 7^3 - 1^2, ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sections D9 and B19.
  • P. Ribenboim, Catalan's Conjecture, Academic Press NY 1994.
  • T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.

Crossrefs

Subsequence of A016825 (see second comment of Don Reble).
n such that A076427(n) = 0. [Corrected by Jonathan Sondow, Apr 14 2014]
For a count of the representations of a number as the difference of two perfect powers, see A076427. The numbers that appear to have unique representations are listed in A076438.
For sequence with similar definition, but allowing negative powers, see A066510.

Extensions

Corrected by Don Reble and Jud McCranie, Oct 08 2002. Corrections were also sent in by Neil Fernandez, David W. Wilson, and Reinhard Zumkeller.

A080769 Number of primes between consecutive integer powers with exponent > 1.

Original entry on oeis.org

2, 2, 0, 2, 3, 0, 2, 0, 4, 3, 4, 3, 5, 0, 1, 3, 5, 5, 3, 1, 5, 1, 7, 5, 2, 4, 6, 7, 7, 5, 2, 6, 9, 8, 7, 8, 9, 8, 8, 6, 4, 9, 10, 9, 10, 7, 2, 9, 12, 11, 12, 6, 5, 9, 12, 11, 3, 10, 8, 0, 2, 13, 15, 10, 11, 15, 7, 9, 12, 13, 11, 0, 12, 17, 2, 11, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 2, 19
Offset: 1

Views

Author

Walter Nissen, Mar 10 2003

Keywords

Examples

			a(1) = 2 because there are 2 primes between 1^2 and 2^2, viz., 2 and 3.
a(2) = 2 because there are 2 primes between 2^2 and 2^3, viz., 5 and 7.
a(3) = 0 because there are no primes between 2^3 and 3^2.
		

Crossrefs

Programs

Formula

a(n) = A000720(A001597(n+1)) - A000720(A001597(n)). - Jianing Song, Nov 19 2019

Extensions

Offset corrected by Jianing Song, Nov 19 2019

A076412 Number of n's in A076411.

Original entry on oeis.org

1, 3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, 35, 19, 18, 39, 41, 43, 28, 17, 47, 49, 51, 53, 55, 57, 59, 61, 39, 24, 65, 67, 69, 71, 35, 38, 75, 77, 79, 81, 47, 36, 85, 87, 89, 23, 68, 71, 10, 12, 95, 97, 99, 101, 103, 40, 65, 107, 109, 100
Offset: 0

Views

Author

Zak Seidov, Oct 09 2002

Keywords

Comments

Equals {1} union A053289. - Tom Verhoeff, Jan 06 2008
Further comments from Tom Verhoeff, Jan 06 2008: (Start)
In general, for any nonnegative increasing sequence A (offset 1), i.e., with 0 <= A(i) < A(i+1), define
F = 'first differences of A' (offset 1), i.e., F(n) = A(n+1) - A(n)
L = 'number of A(i) less than n' (offset 1)
M = 'number of values at most n in L' (offset 0; auxiiliary sequence)
N = 'number of n's in L' (offset 0). Then M = A, i.e. M(k) = A(k+1), N = [ A(1) ] union F.
Proof: Observe that L is nonnegative and ascending: 0 <= L(i) <= L(i+1).
M(0) = N(0) = number of 0's in L = number of i >= 0 such that no A(j) < i = min A = A(1)
For k > 0, M(k) = number of values at most k in L = A(k+1)
N(k) = number of k's in L = number i >= 0 such that exactly k A(j) < i = M(k) - M(k-1) = A(k+1) - A(k) = F(k). QED (End)
First difference of perfect powers: A001597 prepended by 1. - Robert G. Wilson v, May 21 2009
Question: Does every number appear at least once? See the comment in A053289. - Robert G. Wilson v, May 21 2009

Examples

			a(9)=13 because 9 appears 13 times in A076411.
		

Crossrefs

Programs

  • Mathematica
    t = Join[{0, 1}, Select[ Range@ 3600, GCD @@ Last /@ FactorInteger@# > 1 &]]; Rest@t - Most@t (* Robert G. Wilson v, May 21 2009 *)

Extensions

a(19)-a(71) from Robert G. Wilson v, May 21 2009
Previous Showing 11-20 of 86 results. Next