A001755
Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
Original entry on oeis.org
1, 20, 300, 4200, 58800, 846720, 12700800, 199584000, 3293136000, 57081024000, 1038874636800, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000, 62288373664342425600000
Offset: 4
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=4 of unsigned triangle
A111596.
-
[Factorial(n-1)*Binomial(n, 4)/6: n in [4..30]]; // G. C. Greubel, May 10 2021
-
A001755 := n-> n!*binomial(n-1,3)/4!;
-
Table[n!Binomial[n-1, 3]/4!, {n, 4, 25}] (* T. D. Noe, Aug 10 2012 *)
-
[binomial(n,4)*factorial (n-1)/6 for n in range(4, 21)] # Zerinvary Lajos, Jul 07 2009
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A001777
Lah numbers: a(n) = n! * binomial(n-1, 4)/5!.
Original entry on oeis.org
1, 30, 630, 11760, 211680, 3810240, 69854400, 1317254400, 25686460800, 519437318400, 10908183686400, 237996734976000, 5394592659456000, 126980411830272000, 3101950060425216000, 78582734864105472000, 2062796790182768640000, 56059536297908183040000
Offset: 5
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=5 of unsigned triangle
A111596.
-
A001777 := n-> n!*binomial(n-1,4)/5!;
-
Table[n! Binomial[n - 1, 4]/5!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
-
[binomial(n,5)*factorial (n-1)/factorial (4) for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
A001810
a(n) = n!*n*(n-1)*(n-2)/36.
Original entry on oeis.org
0, 0, 0, 1, 16, 200, 2400, 29400, 376320, 5080320, 72576000, 1097712000, 17563392000, 296821324800, 5288816332800, 99165306240000, 1952793722880000, 40311241850880000, 870722823979008000, 19645683716026368000, 462251381553561600000, 11325158848062259200000
Offset: 0
G.f. = x^3 + 16*x^4 + 200*x^5 + 2400*x^6 + 29400*x^7 + 376320*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[Factorial(n)*n*(n-1)*(n-2)/36: n in [0..20]]; // G. C. Greubel, May 16 2018
-
[seq(n!*n*(n-1)*(n-2)/36,n=0..30)];
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=0..20) ; # Zerinvary Lajos, Feb 07 2008
-
Table[n! n*(n-1)*(n-2)/36, {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
-
for(n=0,20, print1(n!*n*(n-1)*(n-2)/36, ", ")) \\ G. C. Greubel, May 16 2018
-
[factorial(m) * binomial(m, 3) / 6 for m in range(22)] # Zerinvary Lajos, Jul 05 2008
A053497
Number of degree-n permutations of order dividing 7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 721, 5761, 25921, 86401, 237601, 570241, 1235521, 892045441, 13348249201, 106757164801, 604924594561, 2722120577281, 10344007402561, 34479959558401, 24928970490633601, 546446134633639681, 6281586217487489041, 50248618811434961281
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
R:=PowerSeriesRing(Rationals(), 31); Coefficients(R!(Laplace( Exp(x + x^7/7) ))); // G. C. Greubel, May 14 2019, Mar 07 2021
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 7])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
CoefficientList[Series[Exp[x+x^7/7], {x, 0, 24}], x]*Range[0, 24]! (* Jean-François Alcover, Mar 24 2014 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^7/7) )) \\ G. C. Greubel, May 14 2019
-
f=factorial; [sum(f(n)/(7^j*f(j)*f(n-7*j)) for j in (0..n/7)) for n in (0..30)] # G. C. Greubel, May 14 2019
A053499
Number of degree-n permutations of order dividing 9.
Original entry on oeis.org
1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 3568144263578808757678251
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3 + x^9/9) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 3, 9])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
CoefficientList[Series[Exp[x+x^3/3+x^9/9], {x, 0, 30}], x]*Range[0, 30]! (* Jean-François Alcover, Mar 24 2014 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^3/3 + x^9/9) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^3/3 + x^9/9), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053502
Number of degree-n permutations of order dividing 12.
Original entry on oeis.org
1, 1, 2, 6, 24, 96, 576, 3312, 21456, 152784, 1237536, 9984096, 133494912, 1412107776, 16369357824, 206123325696, 2866280276736, 36809077162752, 592066290710016, 8800038127378944, 136876273991755776, 2197453620220010496, 37915306084793106432
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 12])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 12}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^4/4 +x^6/6 + x^12/12], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^3/3 + x^4/4 + x^6/6 + x^12/12), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A001811
Coefficients of Laguerre polynomials.
Original entry on oeis.org
1, 25, 450, 7350, 117600, 1905120, 31752000, 548856000, 9879408000, 185513328000, 3636061228800, 74373979680000, 1586644899840000, 35272336619520000, 816302647480320000, 19645683716026368000, 491142092900659200000, 12740803704070041600000
Offset: 4
G.f. = x^4 + 25*x^5 + 450*x^6 + 7350*x^7 + 117600*x^8 + 1905120*x^9 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..19) ; # Zerinvary Lajos, Feb 07 2008
-
Table[n! n (n - 1) (n - 2) (n - 3)/(4!)^2, {n, 4, 20}] (* T. D. Noe, Aug 10 2012 *)
-
[factorial(m) * binomial(m, 4) / 24 for m in range(4,19)] # Zerinvary Lajos, Jul 05 2008
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
A053498
Number of degree-n permutations of order dividing 8.
Original entry on oeis.org
1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 607251736576, 7244686764032, 101611422797824, 1170362064019456, 19281174853615616, 261583327556386816, 4084459360167657472, 54366023748591386624
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* Jean-François Alcover, Mar 24 2014 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ G. C. Greubel, May 14 2019
-
m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
A053504
Number of degree-n permutations of order dividing 24.
Original entry on oeis.org
1, 1, 2, 6, 24, 96, 576, 3312, 26496, 198144, 1691136, 14973696, 193370112, 2034809856, 25087186944, 313539434496, 4421478721536, 58307347556352, 915011420737536, 13553664911437824, 240637745416421376, 3965015057937924096
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 8, 12, 24])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 25 2014
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 8, 12, 24}}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
With[{nn=30},CoefficientList[Series[Exp[Total[x^#/#&/@Divisors[24]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
-
N=30; x='x+O('x^N);
Vec(serlaplace(exp(sumdiv(24, d, x^d/d)))) \\ Gheorghe Coserea, May 11 2017
-
m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053500
Number of degree-n permutations of order dividing 10.
Original entry on oeis.org
1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
Comments