cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A107075 Centered square numbers that are also centered pentagonal numbers.

Original entry on oeis.org

1, 181, 58141, 18721081, 6028129801, 1941039074701, 625008553923781, 201250813324382641, 64802136881897286481, 20866086825157601864101, 6718815155563865902953901, 2163437614004739663149291881
Offset: 1

Views

Author

Richard Choulet, Aug 30 2007, Sep 20 2007

Keywords

Comments

The centered square numbers are n^2 + (n+1)^2 while the centered pentagonal numbers are (5*r^2 + 5*r + 2)/2. A number has both properties iff 5*(2*r+1)^2 = (4*n+2)^2 + 1. We solve the equation 5*Y^2 - 1 = X^2 whose solutions in positive integers are given by A075796 and A007805 respectively. The r values are 0,8,..., i.e., A053606. The n values define A119032.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([181,1,1]). Matrix([[323,1,0], [ -323,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{323,-323,1},{1,181,58141},20] (* Harvey P. Dale, Nov 15 2018 *)

Formula

G.f.: (z*(1-142*z+z^2))/((1-z)*(1-322*z+z^2)).
a(n+2) = 322*a(n+1)-a(n)-140 with a(1)=1 and a(2)=181.
a(n+1) = 161*a(n)-70+18*(80*a(n)^2-70*a(n)+15)^0.5.
a(n) = (14+(9-4*sqrt(5))^(2*n-1)+(9+4*sqrt(5))^(2*n-1))/32. - Gerry Martens, Jun 06 2015

Extensions

More terms from Alois P. Heinz, Aug 14 2008

A166259 Positive integers n such that a centered polygonal number n*k*(k+1)/2+1 is not a square for any k > 0.

Original entry on oeis.org

2, 18, 32, 50, 72, 98, 128, 162, 200, 242, 338, 392, 450, 512, 578, 648, 722, 882, 968, 1058, 1152, 1250, 1352, 1458, 1682, 1800, 1922, 2048, 2178, 2312, 2401, 2450, 2662, 2738, 2809, 2888, 3042, 3174, 3200, 3362, 3528, 3698, 3750, 4050, 4225, 4232, 4418, 4489, 4608, 4802
Offset: 1

Views

Author

Alexander Adamchuk, Oct 10 2009

Keywords

Comments

Positive integers n such that A120744(n) = -1.

Crossrefs

Extensions

Edited and extended by Max Alekseyev, Jan 20 2010

A222393 Nonnegative integers m such that 18*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1

Views

Author

Bruno Berselli, Feb 19 2013

Keywords

Comments

a(n+2)/a(n) tends to A156164.
a(n) is congruent to {0,2,4} (mod 5, 6 and 10).

Crossrefs

Cf. nonnegative integers n such that k*n*(n+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), A222390 (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), this sequence (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
    
  • Magma
    I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
    CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)).
a(n) = a(-n+1) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((3+t*(-1)^n)*(3-2*t)^(2*floor(n/2))+(3-t*(-1)^n)*(3+2*t)^(2*floor(n/2)))/12, where t=sqrt(2).

A145856 Least number k>1 such that centered n-gonal number n*k(k-1)/2+1 is a perfect square, or 0 if no such k exists.

Original entry on oeis.org

3, 0, 2, 4, 3, 8, 16, 2, 17, 9, 15, 5, 6, 16, 2, 3, 6, 0, 7, 4, 3, 40, 7, 2, 22, 8, 111, 4, 16, 8, 16, 0, 3, 9, 2, 5, 990, 9, 15, 3, 46, 16, 10, 5, 6, 336, 10, 2, 30, 0, 31, 16, 11, 416, 7, 3, 11, 33, 55, 4, 78, 56, 2, 6, 3, 8, 47751, 12, 16, 24, 48, 0, 49, 25, 17, 13, 6, 9, 2640, 2, 6721
Offset: 1

Views

Author

Alexander Adamchuk, Oct 22 2008

Keywords

References

  • Jonathan Vos Post, When Centered Polygonal Numbers are Perfect Squares, submitted to Mathematics Magazine, 4 May 2004, manuscript no. 04-1165, unpublished, available upon request. - Jonathan Vos Post, Oct 25 2008

Crossrefs

Formula

a(n) = 0 for n in A166259.
a(n) = A120744(n) + 1. - Alexander Adamchuk, Oct 10 2009

Extensions

Edited by Max Alekseyev, Jan 23 2010
Previous Showing 11-14 of 14 results.