cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A154818 Numbers k such that k^4 contains every digit exactly twice.

Original entry on oeis.org

69636, 70215, 77058, 80892
Offset: 1

Views

Author

Zhining Yang, Jan 15 2009

Keywords

Comments

77058^4 = 35259076387041812496, which contains 2 of each digit 0-9. There are just 4 terms.

Crossrefs

Extensions

Keywords fini and full added. - R. J. Mathar, Jan 17 2009

A178929 Numbers m such that m*reversal(m) contains every decimal digit exactly once.

Original entry on oeis.org

14979, 19167, 19497, 19839, 20247, 20499, 21657, 21864, 22185, 22227, 22329, 25299, 25755, 26325, 28344, 28665, 29643, 32184, 32319, 32418, 32724, 32889, 34194, 34692, 35265, 35853, 36489, 36957, 39588, 41754, 42327, 42564, 42723, 43476, 43656, 44382, 44445
Offset: 1

Views

Author

Michel Lagneau, Dec 30 2010

Keywords

Comments

There are exactly 141 such numbers, no one of them being prime.
The sequence contains 15 semiprimes: 14979 = 3 * 4993, 19167 = 3 * 6389, 20499 = 3 * 6833, 21657 = 3 * 7219, 36489 = 3 * 12163,..., 98337 = 3 * 32779, and 98823 = 3*32941. - Jonathan Vos Post, Dec 31 2010

Examples

			20247 is in the sequence because 20247*74202 = 1502367894 contains ten different digits;
451410 is in the sequence because 451410*14154 = 6389257140 contains ten different digits.
		

Crossrefs

Programs

  • Maple
    with(numtheory): U:=array(1..50) :c:=0:for i from 5000 to 1000000 do: s1:=0:ll:=length(i):for
      q from 0 to ll do:x:=iquo(i, 10^q):y:=irem(x, 10):s1:=s1+y*10^(ll-1-q): od:n:=i*s1:l:=length(n):if   l=10 then n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v
      : U[m]:=u:od: B:={0,1,2,3,4,5,6,7,8,9}: A:=convert(U,set):z:=nops(A):else fi:
      if A intersect B = B and z=10 and l=10 then c:=c+1:printf(`%d, `,i): else fi:od:
      print(c):

Extensions

Confirmed terms 14979-45765 and also that there are exactly 141 terms. - John W. Layman, Dec 30 2010

A190682 Squares whose squares contain every digit at least once.

Original entry on oeis.org

582169, 588289, 1136356, 1183744, 1454436, 1700416, 2030625, 2424249, 2436721, 2669956, 2732409, 2930944, 3024121, 3175524, 3305124, 3381921, 3481956, 3526884, 3900625, 4129024, 4182025, 4223025, 4553956, 4804864, 4981824
Offset: 1

Views

Author

Bruno Berselli, May 17 2011

Keywords

Comments

Squares in A054038.

Examples

			a(2) = A054038(2225) = 588289 = 767^2.
		

Programs

  • Magma
    [ n^2: n in [0..2232] | Seqset(Intseq(n^4)) eq {0..9} ];

Formula

a(n) = A121321(n)^2.

A294661 Numbers whose square contains all of the digits 1 through 9.

Original entry on oeis.org

11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569, 19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807, 25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384, 32043, 32286, 33144, 34273, 35172, 35337, 35713, 35756, 35757, 35772, 35846, 35853
Offset: 1

Views

Author

M. F. Hasler, Nov 08 2017

Keywords

Comments

The sequence has asymptotic density 1: it contains "almost all" numbers.

Examples

			11826^2 = 139854276 contains all digits from 1 to 9 exactly once.
The same is true for all terms up to 30384 whose square is 923187456. These terms are also listed in A071519, they form a subsequence of A054037.
The next 3 terms, 32043 (32043^2 = 1026753849), 32286 (32286^2 = 1042385796) and 33144 (33144^2 = 1098524736) contain all of the digits '0' through '9' exactly once: They are the first terms of A054038.
The next term, 34273 with 34273^2 = 1174638529, does not have this property, but the next two are again of that type (35172^2 = 1237069584 and 35337^2 = 1248703569).
		

Crossrefs

Cf. A054037, A071519 (finite subsequence of the first 30 terms), A054038.

Programs

  • Mathematica
    Select[Range[#, # + 3*10^4] &@ 11111, AllTrue[Most@ DigitCount[#^2], # > 0 &] &] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    is_A294661(n)=#select(t->t,Set(digits(n^2)))>8
    N=100;for(k=10^4,oo,is_A294661(k)||next;print1(k",");N--||break)

A363927 Numbers N such that in the concatenation of N^2 and N^3, each of the 10 decimal digits appears equally often.

Original entry on oeis.org

69, 6534, 497375, 539019, 543447, 586476, 589629, 601575, 646479, 858609, 895688, 959097, 46839081, 47469378, 47693199, 47760623, 47841576, 48038964, 48527792, 48733506, 48886836, 48965892, 49229103, 49397283, 49594832, 49670616, 50013116, 50247423, 50359157
Offset: 1

Views

Author

Keywords

Comments

a(3) = 497375 and a(11) = 895688 are the only terms < 10^6 that are not divisible by 3.
Each term has an even number of decimal digits, k, and a corresponding value between 10^(k-1)*100^(1/3) and 10^k. - Michael S. Branicky, Jun 29 2023
Indeed, the number of digits of concat(N^2, N^3) is floor(2*L + 1) + floor(3*L + 1) where L = log_10(N). This is a multiple of 10 iff L mod 2 is in the interval [5/3, 2), which means that N is in the above range for some even k. - M. F. Hasler, Jul 02 2023

Crossrefs

Cf. A363905, A363909: concat(n^2, n^3) has each digit at least once / twice.
Cf. A171102: pandigital numbers.
Cf. A036744, A054038, A071519 and A156977 for "pandigital squares".
Cf. A119735: n^3 is pandigital.

Programs

  • Mathematica
    fQ[n_] := Length@ Union[ Count[ Sort[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]], #] & /@ Range[0, 9]] == 1; Select[ Range@ 52000000, fQ] (* Robert G. Wilson v, Jul 01 2023 *)
  • PARI
    is(n)={my(v=concat(digits(n^2),digits(n^3)), c=#v); c%10==0 && vecsort(v)==[0..c-1]\(c\10)}
    for(n=1,1e6, is(n)&& print1(n","))

Extensions

a(13) and beyond from Michael S. Branicky, Jun 28 2023

A121322 Numbers m such that m^5 contains every digit at least once.

Original entry on oeis.org

309, 418, 462, 474, 575, 635, 662, 699, 702, 713, 737, 746, 747, 748, 765, 771, 795, 838, 875, 876, 892, 897, 943, 945, 976, 1009, 1012, 1018, 1033, 1072, 1104, 1107, 1137, 1143, 1149, 1167, 1174, 1183, 1187, 1195, 1203, 1233, 1248, 1249, 1269, 1292
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			309^5 = 2817036000549 contains every digit at least once.
		

Crossrefs

Cf. A054038 (with m^2), A119735 (with m^3).

Programs

  • Mathematica
    Select[Range@1500, 1+Union@IntegerDigits@(#^5)==Range@10&] (* Hans Rudolf Widmer, Nov 02 2021 *)
  • PARI
    isok(m) = #Set(digits(m^5)) == 10; \\ Michel Marcus, Nov 02 2021
    
  • Python
    def ok(n): return len(set(str(n**5))) == 10
    print([m for m in range(1293) if ok(m)]) # Michael S. Branicky, Nov 02 2021

A154875 Numbers k such that k^4 contains every digit exactly 3 times.

Original entry on oeis.org

17824719, 17940018, 18027474, 18197931, 18326025, 18798396, 18915888, 18929424, 19027455, 19149462, 19180275, 19196064, 19235673, 19311297, 19322913, 19324275, 19328322, 19455918, 19522575, 19757886, 19793664
Offset: 1

Views

Author

Zhining Yang, Jan 16 2009

Keywords

Examples

			22807116 ^ 4 = 270571148920443982076865351936, which contains exactly 3 times of each digit 0-9.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[17824000,31608000],Union[Tally[IntegerDigits[#^4]][[All,2]]]=={3}&] (* Harvey P. Dale, Dec 24 2016 *)
  • PARI
    is(n) = my(v=vector(10), d=digits(n^4)); if(#d!=30,return(0)); for(i=1, #d, v[d[i]+1]++; if(v[d[i]+1] > 3, return(0))); 1 \\ David A. Corneth, Aug 19 2025

A178960 Numbers n such that n! contains every digit at least once.

Original entry on oeis.org

23, 27, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Michel Lagneau, Dec 31 2010

Keywords

Examples

			23 is in the sequence because 23! = 25852016738884976640000 contains every
  digit at least once.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..101] | Seqset(Intseq(Factorial(n))) eq {0..9}]; // Bruno Berselli, May 17 2011
  • Maple
    with(numtheory):Digits:=200:B:={0,1,2,3,4,5,6,7,8,9}: T:=array(1..250) : for
      p from 1 to 200 do:ind:=0:n:=p!:l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v : T[m]:=u:od: A:=convert(T,set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `,p):else fi:od:
  • Mathematica
    Select[Range[101], Length[Union[IntegerDigits[#!]]] == 10 &]

A363909 Numbers whose square and cube taken together contain each decimal digit at least twice.

Original entry on oeis.org

6534, 11027, 11994, 21906, 22178, 22195, 23317, 24567, 27019, 27963, 28354, 29099, 29309, 29339, 29375, 29558, 29621, 30184, 30552, 30584, 31578, 31727, 32447, 32633, 32793, 32912, 32923, 33087, 33257, 33527, 34284, 35717, 36943, 36958, 37697, 38463
Offset: 1

Views

Author

M. F. Hasler, Jun 27 2023

Keywords

Comments

The first term, a(1) = 6534 is the only number of which the square and cube taken together contain each digit 0 to 9 exactly twice.
Presumably a(n) ~ A363905(n) ~ n. - Charles R Greathouse IV, Jul 03 2023

Examples

			6534^2 = 42693156, 6534^3 = 278957081304, which together contain each digit 0-9 exactly twice.
		

Crossrefs

Cf. A363905: square and cube together contain each digit at least once.
Cf. A036744, A054038, A071519 and A156977 for "pandigital" squares.
Cf. A119735: Numbers n such that every digit occurs at least once in n^3.

Programs

  • PARI
    is(n)=#Set(n=concat(digits(n^2),digits(n^3)))>9&&(n=vecsort(n))[#n-1]==9&&!n[2]&&!for(i=3,#n-2,n[i]>n[i-1]&&n[i]
    				

A154876 10-digit numbers n such that n^16 contains every digit exactly 16 times.

Original entry on oeis.org

8691229761, 8776040742, 8800099059, 8812428855, 8813522223, 8815323864, 8823675177, 8886940968, 9239038038, 9324907263, 9480130515, 9500938647, 9643844169, 9801034758, 9857840688, 9872688021, 9962545842, 9970902252
Offset: 1

Views

Author

Zhining Yang, Jan 16 2009

Keywords

Comments

The search program was provided by wuxinren(http://bbs.emath.ac.cn/space-uid-80.html): http://bbs.emath.ac.cn/attachment.php?aid=697&k=37ef434325a887e1a6f268d69d06192a&t=1232126232

Examples

			8691229761^16=1059984945135973085116625441940958734567890938937942910046410302827750560860737374626331724228885721853160790705924439371252226476405367618058329962361885148161 means that 16th power of 8691229761 has all digit(0-9) each for 16 times exactly
		

Crossrefs

Previous Showing 21-30 of 30 results.