cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A373406 Sum of the n-th maximal run of odd primes differing by two.

Original entry on oeis.org

15, 24, 36, 23, 60, 37, 84, 47, 53, 120, 67, 144, 79, 83, 89, 97, 204, 216, 113, 127, 131, 276, 300, 157, 163, 167, 173, 360, 384, 396, 211, 223, 456, 233, 480, 251, 257, 263, 540, 277, 564, 293, 307, 624, 317, 331, 337, 696, 353, 359, 367, 373, 379, 383
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A251092.
For this sequence we define a run to be an interval of positions at which consecutive terms differ by two. Normally, a run has consecutive terms differing by one, but odd prime numbers already differ by at least two.
Contains A054735 (sums of twin prime pairs) without its first two terms and A007510 (non-twin primes) as subsequences. - R. J. Mathar, Jun 07 2024

Examples

			Row-sums of:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
  83
  89
  97
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A025584, A054265, A067774, A251092 (or A175632), A373405, A373413, A373414.
A000040 lists the primes, differences A001223.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,100],PrimeQ],#1+2==#2&]//Most

A371201 a(n) = Sum_{k=prime(n)..prime(n+1)-1} k, with a(0) = 1.

Original entry on oeis.org

1, 2, 7, 11, 34, 23, 58, 35, 82, 153, 59, 201, 154, 83, 178, 297, 333, 119, 381, 274, 143, 453, 322, 513, 740, 394, 203, 418, 215, 442, 1673, 514, 801, 275, 1435, 299, 921, 957, 658, 1017, 1053, 359, 1855, 383, 778, 395, 2454, 2598, 898, 455, 922, 1413, 479, 2455, 1521, 1557, 1593
Offset: 0

Views

Author

Raul Prisacariu, Mar 15 2024

Keywords

Comments

The sequence can be obtained graphically using the following grid walk rules. From an origin the first movement iteration consists of moving 1 unit in any direction. The n-th movement iteration consists of moving in the same direction n units. If n is a prime number, the movement iteration consists of first changing the movement direction by 90 degrees and then moving n units in the new direction. If n is a nonprime number, the movement iteration consists of moving n units in the same direction as the previous movement iteration. The sequence is obtained by measuring the length of each 90-degree turn.
a(0) is the length of the grid segment before doing any 90-degree turns and a(1) is the length of the first 90-degree turn.

Examples

			a(0) = 1.
a(1) = 2.
a(2) = 3 + 4 = 7.
a(3) = 5 + 6 = 11.
a(4) = 7 + 8 + 9 + 10 = 34.
a(5) = 11 + 12 = 23.
a(6) = 13 + 14 + 15 + 16 = 58.
a(7) = 17 + 18 = 35.
The natural numbers are summed in groups where each prime begins a new group,
  primes     v   v       v       v
         1   2   3   4   5   6   7   8   9  10  ...
        \-/ \-/ \-----/ \-----/ \-------------/
  a(n) = 1   2     7       11          34
    n  = 0   1     2       3           4
		

Crossrefs

Cf. A008837 (partial sums).

Programs

  • Maple
    ithprime(0):=1:
    a:= n-> ((j, k)-> (k-1+j)*(k-j)/2)(map(ithprime, [n, n+1])[]):
    seq(a(n), n=0..56);  # Alois P. Heinz, Mar 16 2024
  • Mathematica
    Join[{1},Table[Prime[n]+(Prime[n+1]+Prime[n])*(Prime[n+1]-Prime[n]-1)/2,{n,56}]] (* James C. McMahon, Apr 20 2024 *)
  • PARI
    first(n) = {
    	my(res = primes(n), t = 0);
    	for(i = 1, n,
    		res[i] = binomial(res[i],2) - t;
    		t+=res[i];
    	);
    	res	
    } \\ David A. Corneth, Mar 16 2024
    
  • Python
    from sympy import nextprime, prime
    def A371201(n):
        if n == 0: return 1
        q = nextprime(p:=prime(n))
        return (q-p)*(p+q-1)>>1 # Chai Wah Wu, Jun 01 2024

Formula

For n > 0, a(n) = A138383(n) - (prime(n+1) - prime(n)).
a(n) = binomial(prime(n+1), 2) - Sum_{k=0..n-1} a(k). - David A. Corneth, Mar 15 2024
a(n) = prime(n) + A054265(n), for n >= 1. - Michel Marcus, Mar 15 2024
a(n) = (prime(n+1)-prime(n))*(prime(n+1)+prime(n)-1)/2 for n>=1. - Chai Wah Wu, Jun 01 2024

Extensions

More terms from Michel Marcus, Mar 15 2024

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]

A375705 Sum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

5, 18, 75, 164, 26, 118, 102, 510, 791, 1160, 1629, 2210, 369, 253, 2040, 3756, 4745, 3914, 1764, 3978, 2994, 8720, 10421, 6003, 5984, 14459, 16820, 19425, 13446, 8328, 25415, 28824, 32525, 36530, 40851, 45500, 50489, 55830, 37259, 23276, 67616, 74085, 80954
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n begins with A375703(n), ends with A375704(n), adds up to a(n), and has length A375702(n).
		

Crossrefs

For nonprime numbers we have A054265, anti-runs A373404.
For nonsquarefree numbers we have A373414, anti-runs A373412.
For squarefree numbers we have A373413, anti-runs A373411.
For prime-powers we have A373675, anti-runs A373576.
For non-prime-powers we have A373678, anti-runs A373679.
The anti-run version is A375737, sums of A375736.
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.
For runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705 (this)

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Total/@Split[Select[Range[100],radQ],#1+1==#2&]//Most

A373413 Sum of the n-th maximal run of squarefree numbers.

Original entry on oeis.org

6, 18, 21, 42, 17, 19, 66, 26, 90, 102, 114, 126, 93, 51, 53, 55, 174, 123, 198, 210, 147, 234, 165, 258, 89, 91, 282, 97, 306, 318, 330, 342, 237, 245, 127, 390, 267, 414, 426, 291, 149, 151, 309, 474, 161, 163, 498, 170, 347, 534, 546, 558, 381, 582, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A120992.
A run of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   1   2   3
   5   6   7
  10  11
  13  14  15
  17
  19
  21  22  23
  26
  29  30  31
  33  34  35
  37  38  39
  41  42  43
  46  47
  51
  53
  55
  57  58  59
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A054265, A072284, A120992, A373406, A373411, A373414, A373415.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1==#2&]//Most

A373820 Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of the version of A027833 with 1 prepended.

Examples

			The antiruns of odd primes (differing by > 2) begin:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
 103 107
 109 113 127 131 137
 139 149
 151 157 163 167 173 179
 181 191
 193 197
 199 211 223 227
 229 233 239
 241 251 257 263 269
 271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
  1  1
  2  2
  3  3
  4
  3
  6
  2
  5
  2
  6
  2  2
  4
  3
  5
  3
  4
with lengths a(n).
		

Crossrefs

Run-lengths of A027833 (if we prepend 1), partial sums A029707.
For runs we have A373819, run-lengths of A251092.
Positions of first appearances are A373827, sorted A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000],PrimeQ],#2-#1>2&]//Most]//Most

A373822 Sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

4, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 12, 4, 12, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 2, 10, 18, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 12, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-sums of A001223. For run-lengths instead of run-sums we have A333254.

Examples

			The odd primes are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with sums a(n).
		

Crossrefs

Run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Dividing by two gives A373823.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]

A054268 Sum of composite numbers between prime p and nextprime(p) is a repdigit.

Original entry on oeis.org

3, 5, 109, 111111109, 259259257
Offset: 1

Views

Author

Patrick De Geest, Apr 15 2000

Keywords

Comments

No additional terms below 472882027.
No additional terms below 10^58. - Chai Wah Wu, Jun 01 2024

Examples

			a(5) is ok since between 259259257 and nextprime 259259261 we get the sum 259259258 + 259259259 + 259259260 which yield repdigit 777777777.
		

Crossrefs

Programs

  • Mathematica
    repQ[n_]:=Count[DigitCount[n],0]==9; Select[Prime[Range[2,14500000]], repQ[Total[Range[#+1,NextPrime[#]-1]]]&] (* Harvey P. Dale, Jan 29 2011 *)
  • Python
    from sympy import prime
    A054268 = [prime(n) for n in range(2,10**5) if len(set(str(int((prime(n+1)-prime(n)-1)*(prime(n+1)+prime(n))/2)))) == 1]
    # Chai Wah Wu, Aug 12 2014
    
  • Python
    from itertools import count, islice
    from sympy import isprime, nextprime
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A054268_gen(): # generator of terms
        for l in count(1):
            c = []
            for m in range(1,10):
                k = m*(10**l-1)//9<<1
                for a, b in diop_quadratic((x-y-1)*(x+y)-k):
                    if isprime(b) and a == nextprime(b):
                        c.append(b)
            yield from sorted(c)
    A054268_list = list(islice(A054268_gen(),5)) # Chai Wah Wu, Jun 01 2024

Formula

Numbers A000040(n) for n > 1 such that A001043(n)*(A001223(n)-1)/2 is in A010785. - Chai Wah Wu, Aug 12 2014

Extensions

Offset changed by Andrew Howroyd, Aug 14 2024

A375737 Sum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 8, 6, 17, 11, 12, 13, 14, 32, 18, 19, 20, 21, 22, 23, 78, 29, 30, 64, 34, 72, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 98, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 128, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 162, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose sums are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For nonprime numbers we have A373404, runs A054265.
For squarefree numbers we have A373411, runs A373413.
For nonsquarefree numbers we have A373412, runs A373414.
For prime-powers we have A373576, runs A373675.
For non-prime-powers we have A373679, runs A373678.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738
- last: A375739
- sum: A375737 (this)
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Total/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most
Previous Showing 11-20 of 44 results. Next