cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A174616 Number of eight-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 89, 655, 3622, 16348, 63635, 223997, 720406, 2148017, 6015901, 16005646
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			The smallest Carmichael number with 8 prime factors is 232250619601 = 7*11*13*17*31*37*73*163, and there are 6 others, so a(12) = 7.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A174617 Number of nine-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 27, 170, 1436, 8835, 44993, 196391, 762963, 2714473, 8939435
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			The smallest Carmichael number with 9 prime factors is 9746347772161 = 7*11*13*17*19*31*37*41*641, so a(13)=1..
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A299711 Number of eleven-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

1, 49, 576, 5804, 42764, 262818
Offset: 17

Views

Author

Tim Johannes Ohrtmann, Feb 17 2018

Keywords

Examples

			60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 is the only Carmichael number with eleven prime factors below 10^17, so a(17) = 1.
		

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A258801 Carmichael numbers divisible by 3.

Original entry on oeis.org

561, 62745, 656601, 11921001, 26719701, 45318561, 174352641, 230996949, 662086041, 684106401, 689880801, 1534274841, 1848112761, 2176838049, 3022354401, 5860426881, 6025532241, 6097778961, 7281824001, 7397902401, 10031651841, 10054063041, 10585115841
Offset: 1

Views

Author

Fred Patrick Doty, Jun 10 2015

Keywords

Comments

Most Carmichael numbers are congruent to 1 modulo 6. Those that are not are observed to include numbers that are 5 modulo 6 as well as multiples of 3.
Subsequence of A008585 and of A205947.
No member of this sequence is divisible by any prime of the form 6k+1, hence all prime factors for this sequence are members of A045410.

Crossrefs

Cf. A002997 (Carmichael numbers), A205947 (Carmichael numbers not congruent to 1 modulo 6).
Cf. A008585 (3*n).
Cf. A045410 (primes not congruent to 1 modulo 6).

Programs

  • Maple
    select(t -> t mod numtheory:-lambda(t) = 1, [seq(6*k+3,k=1..10^6)]); # Robert Israel, Jul 12 2015
  • Mathematica
    Cases[Range[555,10^6,6],n_/;Mod[n,CarmichaelLambda[n]]==1]
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    is(n)=n%6==3 && Korselt(n) && n>9 \\ Charles R Greathouse IV, Jul 20 2015

A135721 a(n) is the smallest Carmichael number (A002997) divisible by the n-th prime, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 561, 1729, 6601, 2465, 2821, 29341, 6601, 334153, 62745, 2433601, 74165065, 29341, 8911, 10024561, 10585, 2508013, 55462177, 62745, 46657, 101101, 52633, 84350561, 188461, 278545, 1152271, 18307381, 410041, 2628073, 12261061, 838201
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			561 is the first Carmichael number and its prime factors are 3, 11, 17 (2nd, 5th and 7th primes), so a(2), a(5) and a(7) are equal to 561. - _Michel Marcus_, Nov 07 2013
		

Crossrefs

Programs

  • Mathematica
    c = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[First@ Select[c, Mod[#, Prime@ n] == 0 &], {n, 2, 16}] (* Michael De Vlieger, Aug 28 2015, after Artur Jasinski at A002997 *)
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = my(pn=prime(n),cn = 31*pn); until (isA002997(cn+=2*pn),); cn; \\ Michel Marcus, Nov 07 2013, improved by M. F. Hasler, Apr 14 2015
    
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    a(n,p=prime(n))=my(m=lift(Mod(1/p,p-1)),c=max(m,33)*p,mp=m*p); while(!isprime(c) && !Korselt(c), c+=mp); c \\ Charles R Greathouse IV, Apr 15 2015

Extensions

More terms from Michel Marcus, Nov 07 2013
Escape clause added by Jianing Song, Dec 12 2021

A339909 Carmichael numbers k for which bigomega(phi(k)) < bigomega(k-1), where bigomega gives the number of prime divisors, counted with multiplicity.

Original entry on oeis.org

1729, 14676481, 84350561, 90698401, 279377281, 382536001, 413138881, 542497201, 702683101, 781347841, 851703301, 939947009, 955134181, 3480174001, 4765950001, 5255104513, 5781222721, 5985964801, 7558388641, 7816642561, 8714965001, 9237473281, 13630072501, 18189007201, 21669076801, 21863001601, 23915494401, 25477682491
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

Natural numbers n that satisfy equation k * phi(n) = n - 1, for some integer k > 1, should all occur in this sequence, if they exist at all. Lehmer conjectured that there are no such numbers.

Crossrefs

Intersection of A002997 and A339908.
Cf. also A339818, A339869, A339878.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; Select[carmichaels, PrimeOmega[EulerPhi[#]] < PrimeOmega[# - 1] &] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    isA339909(n) = ((n>1)&&issquarefree(n)&&!isprime(n)&&(bigomega(eulerphi(n))A002322(n))));

A036060 Number of 3-component Carmichael numbers C = (6M + 1)(12M + 1)(18M + 1) < 10^n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 7, 10, 16, 25, 50, 86, 150, 256, 436, 783, 1435, 2631, 4765, 8766, 16320, 30601, 57719, 109504, 208822, 400643, 771735, 1494772, 2903761, 5658670, 11059937, 21696205, 42670184, 84144873, 66369603, 329733896, 655014986, 1303918824, 2601139051
Offset: 3

Views

Author

Keywords

Comments

Note that this is different from the count of 3-Carmichael numbers, A132195. The numbers counted here are neither those listed in A087788 (3 arbitrary prime factors) nor those listed in A033502 (where 6m + 1, 12m + 1 and 18m + 1 are all prime). - M. F. Hasler, Apr 14 2015

References

  • Posting by Harvey Dubner (harvey(AT)dubner.com) to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Nov 23 1998.

Crossrefs

Extensions

Terms updated (from Dubner's paper) by Amiram Eldar, Aug 11 2017

A182490 Number of Carmichael numbers between 2^n and 2^(n+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 3, 1, 5, 4, 4, 10, 12, 10, 14, 26, 35, 32, 52, 76, 85, 108, 173, 208, 254, 328, 428, 563, 693, 928, 1130, 1454, 1879, 2481, 3234, 4164, 5231, 6890, 8855, 11309, 14905, 19227, 25040, 32035, 41615, 53710, 70061, 91228, 118940, 154659, 201004, 263363, 343053, 447613, 586096, 765319, 1000803, 1311065, 1716615, 2253877, 2956272, 3879379
Offset: 1

Views

Author

Brad Clardy, May 02 2012

Keywords

Comments

While there may be an infinite number of Carmichael numbers, the ratio of Carmichael composites to odd composites (A094812), when looked at as a function of the power-of-two interval, apparently approaches 0 as the interval number n increases. It is 0.00533333 for n=10 but decreases to 0.00009035 by n=18 and is 0.00000254 at n=26, and looks like it could be reasonably modeled by 1/(A + B*log(n) + C*(log(n))^2 + D*(log(n)^3)).

Crossrefs

Cf. A002997.

Programs

  • Magma
    for i:= 1 to 25 do
    icount:=0;
    for k := 2^i +1 to 2^(i+1)-1 by 2 do
      if (not IsPrime(k) and (k mod CarmichaelLambda(k) eq 1)) then icount +:=1;
      end if;
    end for;
    i, icount;
    end for;

Extensions

Extended to a(50) by T. D. Noe, May 02 2012
Extended to a(68) with data from R. Pinch by Brad Clardy, May 18 2014

A287591 Carmichael numbers k such that k-2 and k+2 are both primes.

Original entry on oeis.org

656601, 25536531021, 8829751133841, 60561233400921, 79934093254401, 352609909731201, 598438077923841, 976515437206401, 2122162714918401, 2789066007968241, 3767175573114801, 7881891474971361, 10740122274670881, 11512252145095521, 16924806963384321
Offset: 1

Views

Author

Amiram Eldar, May 26 2017

Keywords

Comments

Rotkiewicz conjectured that there are infinitely many Carmichael numbers k such that k-2 or k+2 are primes.
The terms were calculated using Pinch's tables of Carmichael numbers (see link below).

Examples

			656601 is in the sequence since it is a Carmichael number (A002997) and both 656599 and 656603 are primes.
		

Crossrefs

Subsequence of A258801.

A339878 Carmichael numbers k such that phi(k) divides p*(k - 1) for some prime factor p of k - 1.

Original entry on oeis.org

1729, 3069196417, 23915494401, 1334063001601, 6767608320001, 33812972024833, 1584348087168001, 1602991137369601, 6166793784729601, 1531757211193440001, 84388996672599528001
Offset: 1

Views

Author

Antti Karttunen (after Thomas Ordowski's and Amiram Eldar's SeqFan-posting), Dec 26 2020

Keywords

Comments

The first ten terms are all in A339818, none is in A339869, and all except a(2) and a(6) are in A339909.
Also, for all ten, a(n) == 1 (mod 64). (Cf. a similar comment in A338998).

Crossrefs

Intersection of A002997 and A338998.
Cf. also A339818, A339869, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[n_] := Module[{p = FactorInteger[n - 1][[;; , 1]], phi = EulerPhi[n]}, AnyTrue[(n - 1)*p, Divisible[#, phi] &]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)

Extensions

a(10) from Amiram Eldar, Dec 26 2020
a(11) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 21 2024
Previous Showing 11-20 of 60 results. Next