cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A316867 Number of times 6 appears in decimal expansion of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Jul 15 2018

Keywords

Examples

			a(0) = 0 since the decimal representation of 0 does not contain the digit 6.
a(6) = 1 since 6 appears once in the decimal expansion of 6.
		

Crossrefs

Programs

  • Mathematica
    Array[ DigitCount[#, 10, 6] &, 105, 0]
  • PARI
    a(n) = #select(x->x==6, digits(n)); \\ Michel Marcus, Jul 20 2018

A061217 Number of zeros in the concatenation n(n-1)(n-2)(n-3)...321.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 12, 13, 14
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2001

Keywords

Comments

The number of zeros necessary to write down all the numbers 1, 2, ..., n. Thus, the partial sums of A055641 are given by a(n)+1 (for n>=1). - Hieronymus Fischer, Jun 12 2012

Examples

			a(30) = 3 since number of zeros in 302928272625242322212019181716151413121110987654321 is 3. (This example implies offset = 1.)
		

Crossrefs

Programs

  • Haskell
    a061217 n = a061217_list !! (n-1)
    a061217_list = scanl1 (+) $ map a055641 [1..]
    -- Reinhard Zumkeller, Oct 27 2013
    
  • Mathematica
    Table[Count[Flatten[IntegerDigits/@Table[x-n,{n,0,x-1}]],0],{x,110}] (* Harvey P. Dale, Aug 10 2011 *)
  • PARI
    a(n) = my(m=logint(n,10)); (m+1)*(n+1) - (10^(m+1)-1)/9 + (1/2) * sum(j=1, m+1, (n\10^j * (2*n+2 - (1 + n\10^j) * 10 ^ j) - floor(n/10^j+9/10) * (2*n+2 + ((4/5 - floor(n / 10^j + 9 / 10))*10^j)))) \\ adapted from formula by Hieronymus Fischer \\ David A. Corneth, Jan 23 2019

Formula

From Hieronymus Fischer, Jun 12 2012: (Start)
a(n) = (m+1)*(n+1) - (10^(m+1)-1)/9 + (1/2)*Sum_{j=1..m+1} (floor(n/10^j)*(2*n + 2 - (1 + floor(n/10^j))*10^j) - floor(n/10^j + 9/10)*(2*n + 2 + (4/5 - floor(n/10^j + 9/10))*10^j)), where m=floor(log_10(n)).
a(n) = A117804(n+1) - (n+1)*A054640(n) + (1/2)*Sum_{j=1..m+1} ((floor(n/10^j + 9/10)^2 - floor(n/10^j)^2)*10^j - (4/5*floor(n/10^j + 9/10) + floor(n/10^j))*10^j), where m=floor(log_10(n)).
a(10^m-1) = m*10^(m-1) - (10^m-1)/9.
(This is the total number of zeros occurring in all the numbers 1..10^m-1 or numbers with <= m places excluding zero.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (1-x^10^j)*x^10^(j+1)/(1-x^10^(j+1)). (End)

Extensions

Corrected and extended by Patrick De Geest, Jun 05 2001
Offset changed to 1 by Hieronymus Fischer, Jun 12 2012

A102679 Number of digits >= 7 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007093 (numbers in base 7). - Bernard Schott, Feb 12 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..125); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 3/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102681 Number of digits >= 8 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007094 (numbers in base 8). - Bernard Schott, Feb 18 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A249304 Number of zeros in row n of triangle A249133.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 5, 3, 7, 13, 13, 11, 13, 15, 13, 7, 15, 29, 29, 27, 29, 31, 29, 23, 29, 39, 37, 31, 33, 35, 29, 15, 31, 61, 61, 59, 61, 63, 61, 55, 61, 71, 69, 63, 65, 67, 61, 47, 61, 87, 85, 79, 81, 83, 77, 63, 73, 91, 85, 71, 73, 75, 61, 31, 63, 125, 125
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2014

Keywords

Comments

a(n) = (number of even terms in row n of triangle A249095) = A023416(A249184(n)) = A055641(A249183(n)).

Crossrefs

Programs

  • Haskell
    a249304 n = if n == 0 then 0 else a048967 n + a048967 (n - 1)
  • Mathematica
    Join[{0}, Plus @@@ Partition[Table[n + 1 - 2^DigitCount[n, 2, 1], {n, 0, 100}], 2, 1]] (* Amiram Eldar, Jul 28 2023 *)

Formula

a(n) = A048967(n) + A048967(n-1) for n > 0.

A102677 Number of digits >= 6 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007092 (numbers in base 6). - Bernard Schott, Feb 02 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[Most@ DigitCount@ n, -4], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 2/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A249183 a(n) = row n of triangle A249133, concatenated.

Original entry on oeis.org

1, 111, 11011, 1110111, 110101011, 11100000111, 1101100011011, 111011101110111, 11010101010101011, 1110000000000000111, 110110000000000011011, 11101110000000001110111, 1101010110000000110101011, 111000001110000011100000111, 11011000110110001101100011011
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2014

Keywords

Examples

			.   0:                                  1
.   1:                                 111
.   2:                                11011
.   3:                               1110111
.   4:                              110101011
.   5:                             11100000111
.   6:                            1101100011011
.   7:                           111011101110111
.   8:                          11010101010101011
.   9:                         1110000000000000111
.  10:                        110110000000000011011
.  11:                       11101110000000001110111
.  12:                      1101010110000000110101011
.  13:                     111000001110000011100000111
.  14:                    11011000110110001101100011011
.  15:                   1110111011101110111011101110111
.  16:                  110101010101010101010101010101011
.  17:                 11100000000000000000000000000000111
.  18:                1101100000000000000000000000000011011
.  19:               111011100000000000000000000000001110111
.  20:              11010101100000000000000000000000110101011
.  21:             1110000011100000000000000000000011100000111
.  22:            110110001101100000000000000000001101100011011
.  23:           11101110111011100000000000000000111011101110111
.  24:          1101010101010101100000000000000011010101010101011
.  25:         111000000000000011100000000000001110000000000000111
.  26:        11011000000000001101100000000000110110000000000011011
.  27:       1110111000000000111011100000000011101110000000001110111
.  28:      110101011000000011010101100000001101010110000000110101011
.  29:     11100000111000001110000011100000111000001110000011100000111
.  30:    1101100011011000110110001101100011011000110110001101100011011
.  31:   111011101110111011101110111011101110111011101110111011101110111
.  32:  11010101010101010101010101010101010101010101010101010101010101011 .
		

Crossrefs

Cf. A249133, A249184 (decimal), A007088, A006943.

Programs

  • Haskell
    a249183 = foldr (\b v -> 10 * v + b) 0 . a249133_row
  • Mathematica
    a[n_] := FromDigits[Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]]; Array[a, 15, 0] (* Amiram Eldar, Jul 28 2023 *)

Formula

a(n) = Sum_{k=0..2*n} A249133(n,k)*10^k.
a(n) = A007088(A249184(n));
A055641(a(n)) = A249304(n).

A075877 Powering the decimal digits of n (left-associative).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2002

Keywords

Comments

See A256229 for the (maybe more natural) "right-associative" variant, a(xyz)=x^(y^z). a(n) = A256229(n) for n < 212 (up to 210, according to the 2nd formula which also holds for A256229), but (2^1)^2 = 4 while 2^(1^2) = 1. - M. F. Hasler, Mar 22 2015

Examples

			a(253) = (2^5)^3 = 32^3 = 32768.
		

Crossrefs

Programs

Formula

a(n) = if n < 10 then n else a(floor(n\10))^(n mod 10).
a(n) = 1 iff the initial digit is 1 or n contains a 0 (i.e., A055641(n) > 0 or A000030(n) = 1);
a(A011540(n)) = 1.
a(n) = A133500(n) for n <= 99. - Reinhard Zumkeller, May 27 2013

Extensions

Formula corrected by Reinhard Zumkeller, May 27 2013
Edited by M. F. Hasler, Mar 22 2015

A102684 Number of times the digit 9 appears in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

This is the total number of digits = 9 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..105); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[DigitCount[Range[0,100],10,9]] (* Harvey P. Dale, Mar 30 2018 *)
  • PARI
    a(n) = sum(k=0, n, #select(x->(x==9), digits(k))); \\ Michel Marcus, Oct 03 2023

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/10)*(2n + 2 - (4/5 + floor(n/10^j + 1/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102683(n) + (1/2)*Sum_{j=1..m+1} ((-4/5*floor(n/10^j + 1/10) + floor(n/10^j))*10^j - (floor(n/10^j + 1/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = m*10^(m-1).
(this is total number of digits = 9 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
Definition revised by N. J. A. Sloane, Mar 30 2018

A356859 a(n) is the number of zero digits in the product of the first n numbers not divisible by 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 2, 4, 1, 2, 2, 2, 6, 5, 2, 3, 5, 4, 2, 5, 3, 4, 6, 4, 3, 8, 3, 3, 4, 8, 9, 6, 3, 5, 9, 6, 10, 9, 7, 4, 11, 10, 10, 8, 13, 9, 5, 8, 8, 11, 7, 8, 10, 13, 11, 10, 12, 11, 13, 13, 16, 6, 16, 10, 21, 17
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Crossrefs

Cf. A356860 (number of digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Count[IntegerDigits[Product[Floor[(5i-1)/4], {i,n}]], 0], {n,0,80}]
  • Python
    from math import prod
    def a(n): return str(prod((5*k-1)//4 for k in range(1, n+1))).count("0")
    print([a(n) for n in range(81)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = A055641(A356858(n)).
Previous Showing 31-40 of 66 results. Next