cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A122430 Primes of the form 1+2*n+3*n^2.

Original entry on oeis.org

17, 457, 617, 1009, 1777, 2081, 3137, 4409, 5897, 9521, 11657, 14009, 24481, 25577, 29009, 39217, 43441, 47881, 49409, 62497, 67801, 75209, 81017, 85009, 87041, 93281, 97561, 104161, 110977, 120401, 132721, 135257, 140401, 159161, 182041
Offset: 1

Views

Author

Zak Seidov, Oct 20 2006

Keywords

Comments

3*a(n)-2 is a square (of the form (3*k+1)^2). - Vincenzo Librandi, Mar 15 2013
Also primes which are the sum of 2 consecutive pentagonal numbers (A000326). - Vicente Izquierdo Gomez, Aug 13 2017

Crossrefs

Cf. A086285 (numbers n such that 1+2n+3n^2 is prime).
Subsequence of A056109.

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 1+2*n+3*n^2]; // Vincenzo Librandi, Mar 15 2013
    
  • Mathematica
    Select[Table[1 + 2 n + 3 n^2, {n, 500}], PrimeQ] (* Vincenzo Librandi, Mar 15 2013 *)
  • PARI
    is(n)=isprime(n) && issquare(3*n-2,&n) && n%3==1 \\ Charles R Greathouse IV, Sep 23 2013

A131464 a(n) = 4*n^3 - 3*n^2 + 2*n - 1.

Original entry on oeis.org

2, 23, 86, 215, 434, 767, 1238, 1871, 2690, 3719, 4982, 6503, 8306, 10415, 12854, 15647, 18818, 22391, 26390, 30839, 35762, 41183, 47126, 53615, 60674, 68327, 76598, 85511, 95090, 105359, 116342, 128063, 140546, 153815, 167894, 182807, 198578, 215231, 232790
Offset: 1

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3-3*n^2+2*n-1: n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[2, 23, 86, 215]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    CoefficientList[Series[(2 + 15 x + 6 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2013 *)
    Table[4n^3-3n^2+2n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,23,86,215},40] (* Harvey P. Dale, May 05 2018 *)

Formula

From Vincenzo Librandi, Feb 12 2013: (Start)
G.f.: x*(2 + 15*x + 6*x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). (End)
E.g.f.: 1 - exp(x)*(1 - 3*x - 9*x^2 - 4*x^3). - Stefano Spezia, Dec 06 2024

A238377 Row sums of triangle in A204028.

Original entry on oeis.org

1, 2, 6, 10, 17, 24, 34, 44, 57, 70, 86, 102, 121, 140, 162, 184, 209, 234, 262, 290, 321, 352, 386, 420, 457, 494, 534, 574, 617, 660, 706, 752, 801, 850, 902, 954, 1009, 1064, 1122, 1180
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Examples

			Triangle in A204028 begins:
  1;............................sum = 1
  1, 1;.........................sum = 2
  1, 4, 1;......................sum = 6
  1, 4, 4, 1;...................sum = 10
  1, 4, 7, 4, 1;................sum = 17
  1, 4, 7, 7, 4, 1;.............sum = 24
  1, 4, 7, 10, 7, 4, 1;.........sum = 34
  1, 4, 7, 10, 10, 7, 4, 1;.....sum = 44
		

Crossrefs

Formula

G.f.: (1+2*x^2)/((1+x)*(1-x)^3).
a(2*n) = A056109(n).
a(2*n+1) = A049450(n+1) = 2*A000326(n+1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), a(0) = 1, a(1) = 2, a(2) = 6, a(3) = 10.

Extensions

Corrected by R. J. Mathar, Aug 08 2015

A113531 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.

Original entry on oeis.org

1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, 390277, 654321, 1045221, 1604041, 2379885, 3430617, 4823581, 6636321, 8957301, 11886625, 15536757, 20033241, 25515421, 32137161, 40067565, 49491697, 60611301, 73645521
Offset: 0

Views

Author

Jonathan Vos Post, Jan 12 2006

Keywords

Comments

1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 = (n^7 - 1)/(n-1). a(6) = 1 + 2*6 + 3*6^2 + 4*6^3 + 5*6^4 + 6*6^5 = 54121 is prime, the smallest prime in the sequence. The next is a(a(1)) = a(21) = 1 + 2*21 + 3*21^2 + 4*21^3 + 5*21^4 + 6*21^5 = 25515421. Then a(24) = 49491697.

Crossrefs

Programs

  • Mathematica
    With[{eq=Total[# n^(#-1)&/@Range[6]]},Table[eq,{n,0,30}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,21,321,2005,7737,22461},30] (* Harvey P. Dale, Nov 02 2011 *)
  • PARI
    for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5, ", ")) \\ G. C. Greubel, Mar 15 2017

Formula

a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.
O.g.f.: 2064/(-1+x)^4+3/(-1+x)+2040/(-1+x)^5+132/(-1+x)^2+720/(-1+x)^6+872/(-1+x)^3 . - R. J. Mathar, Feb 26 2008
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), a(0)=1, a(1)=21, a(2)=321, a(3)=2005, a(4)=7737, a(5)=22461. - Harvey P. Dale, Nov 02 2011

Extensions

Corrected by R. J. Mathar, Feb 26 2008

A113532 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.

Original entry on oeis.org

1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, 4110364, 7654321, 13446148, 22505929, 36167548, 56137369, 84557956, 124076833, 177920284, 249972193, 344857924, 468033241, 625878268, 825796489, 1076318788
Offset: 0

Views

Author

Jonathan Vos Post, Jan 12 2006

Keywords

Comments

1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7*n^6 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 = (x^8 - 1)/(x-1). a(2) = 1 + 2*2 + 3*2^2 + 4*2^3 + 5*2^4 + 6*2^5 + 7*2^6 = 769 is prime. Other primes begin a(6) = 380713, a(12) = 22505929, a(26) = 2236055953, a(38) = 21562615273, a(44) = 51802781449, a(52) = 140712620569.

Crossrefs

Programs

  • Mathematica
    Table[1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, {n,0,50}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 28, 769, 7108, 36409, 131836, 380713}, 50] (* G. C. Greubel, Mar 15 2017 *)
  • PARI
    for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, ", ")) \\ G. C. Greubel, Mar 15 2017

Formula

a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.
O.g.f.: -12636/(-1+x)^4 -4/(-1+x) -21480/(-1+x)^5 -309/(-1+x)^2 -16920/(-1+x)^6 -3342/(-1+x)^3-5040/(-1+x)^7 . - R. J. Mathar, Feb 26 2008

A130884 3n^3 + 2n^2 + n + 1.

Original entry on oeis.org

1, 7, 35, 103, 229, 431, 727, 1135, 1673, 2359, 3211, 4247, 5485, 6943, 8639, 10591, 12817, 15335, 18163, 21319, 24821, 28687, 32935, 37583, 42649, 48151, 54107, 60535, 67453, 74879, 82831, 91327, 100385, 110023, 120259, 131111
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Magma
    [3*n^3+2*n^2+n+1: n in [0..35]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    Table[3n^3+2n^2+n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,7,35,103},40] (* Harvey P. Dale, Jan 17 2012 *)

Formula

G.f.: (1+13*x^2+x^3+3*x)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(0)=1, a(1)=7, a(2)=35, a(3)=103, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4) [Harvey P. Dale, Jan 17 2012]

A130885 3n^3 - 2n^2 + n - 1.

Original entry on oeis.org

1, 17, 65, 163, 329, 581, 937, 1415, 2033, 2809, 3761, 4907, 6265, 7853, 9689, 11791, 14177, 16865, 19873, 23219, 26921, 30997, 35465, 40343, 45649, 51401, 57617, 64315, 71513, 79229, 87481, 96287, 105665, 115633, 126209, 137411
Offset: 1

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Magma
    [3*n^3-2*n^2+n-1: n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[1, 17, 65, 163]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    Table[3*n^3 - 2*n^2 + n - 1, {n, 1, 40}] (* Vincenzo Librandi, Feb 12 2013 *)
    LinearRecurrence[{4,-6,4,-1},{1,17,65,163},40] (* Harvey P. Dale, Nov 21 2019 *)

Formula

G.f.: x*(1+13*x+3*x^2+x^3)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Feb 12 2013

A130886 4n^4 + 3n^3 + 2n^2 + n + 1.

Original entry on oeis.org

1, 11, 99, 427, 1253, 2931, 5911, 10739, 18057, 28603, 43211, 62811, 88429, 121187, 162303, 213091, 274961, 349419, 438067, 542603, 664821, 806611, 969959, 1156947, 1369753, 1610651, 1882011, 2186299, 2526077, 2904003
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Magma
    [4*n^4+3*n^3+2*n^2+n+1: n in [0..40]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    CoefficientList[Series[(1 + 6 x + 54 x^2 + 32 x^3 + 3 x^4)/(1 - x)^5, {x, 0, 35}], x] (* Vincenzo Librandi, Feb 12 2013 *)

Formula

G.f.: (1 + 6*x + 54*x^2 + 32*x^3 + 3*x^4)/(1 - x)^5. - Vincenzo Librandi, Feb 12 2013

A131466 a(n) = 5n^4 - 4n^3 + 3n^2 - 2n + 1.

Original entry on oeis.org

1, 3, 57, 319, 1065, 2691, 5713, 10767, 18609, 30115, 46281, 68223, 97177, 134499, 181665, 240271, 312033, 398787, 502489, 625215, 769161, 936643, 1130097, 1352079, 1605265, 1892451, 2216553, 2580607, 2987769, 3441315
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5n^4-4n^3+3n^2-2n+1,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,3,57,319,1065},30] (* Harvey P. Dale, Nov 01 2020 *)
  • PARI
    a(n)=5*n^4-4*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Oct 21 2022

Formula

From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (-15*x^4 - 54*x^3 - 52*x^2 + 2*x - 1)/(x - 1)^5. (End)

A275673 List of numbers that are in a spoke of a hexagonal spiral.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 31, 34, 37, 41, 45, 49, 53, 57, 61, 66, 71, 76, 81, 86, 91, 97, 103, 109, 115, 121, 127, 134, 141, 148, 155, 162, 169, 177, 185, 193, 201, 209, 217, 226, 235, 244, 253, 262, 271, 281, 291, 301, 311, 321
Offset: 1

Views

Author

Peter Kagey, Aug 04 2016

Keywords

Comments

This sequence contains k if and only if k is in one of the following sequences: A056105, A056106, A056107, A056108, A056109, A003215.
Alternatively, this sequence consists of the numbers of the form 3k^2 + bk + 1 for nonnegative k and -2 <= b <= 3.

Crossrefs

Programs

  • Haskell
    a275673 n = a275673_list !! (n - 1)
    a275673_list = scanl (+) 1 $ concatMap (replicate 6) [1..]

Formula

Conjectures from Colin Barker, Aug 05 2016: (Start)
a(n) = 2*a(n-1)-a(n-2)+a(n-6)-2*a(n-7)+a(n-8) for n>8.
G.f.: x*(1-x^6+x^7) / ((1-x)^3*(1+x)*(1-x+x^2)*(1+x+x^2)).
(End)
Conjecture: a(n) = (n+4-3*floor((n+4)/6)-2)*floor((n+4)/6)+1. - Luce ETIENNE, May 25 2017
Previous Showing 31-40 of 47 results. Next