cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A056573 Sixth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 64, 729, 15625, 262144, 4826809, 85766121, 1544804416, 27680640625, 496981290961, 8916100448256, 160005726539569, 2871098559212689, 51520374361000000, 924491486192068809, 16589354847268067929
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Sixth row of array A103323.

Programs

Formula

a(n) = F(n)^6, where F(n) = A000045(n).
G.f.: x*p(6, x)/q(6, x) with p(6, x) := sum_{m=0..5} A056588(5, m)*x^m = (1-x)*(1 - 11*x - 64*x^2 - 11*x^3 + x^4) and q(6, x) := sum_{m=0..7} A055870(7, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..7} A055870(7, m)*a(n-m) = 0, n >= 7; inputs: a(n), n=0..6. a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7).
From Gary Detlefs, Jan 07 2013: (Start)
a(n) = (F(3*n)^2 - (-1)^n*6*F(n)*F(3*n) + 9*F(n)^2)/25.
a(n) = (10*F(n)^3*F(3*n) - F(3*n)^2 + 9*F(n)^2)/25. (End)
a(n+1) = 2*[2*F(n+1)^2-(-1)^n]^3+3*F(n)^2*F(n+1)^2*F(n+2)^2-[F(n)^6+F(n+2)^6] = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^6, for n (this is Theorem 2.2 (vi) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A056574 Seventh power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 128, 2187, 78125, 2097152, 62748517, 1801088541, 52523350144, 1522435234375, 44231334895529, 1283918464548864, 37281334283719577, 1082404156823183753, 31427428360210000000, 912473096871571914483
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Seventh row of array A103323.

Programs

Formula

a(n) = F(n)^7, where F(n) = A000045(n).
G.f.: x*p(7, x)/q(7, x) with p(7, x) := sum_{m=0..6} A056588(6, m)*x^m = 1 - 20*x - 166*x^2 + 318*x^3 + 166*x^4 - 20*x^5 - x^6 and q(7, x) := sum_{m=0..8} A055870(8, m)*x^m = (1 + x - x^2)*(1 - 4*x - x^2)*(1 + 11*x - x^2)*(1 - 29*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..8} A055870(8, m)*a(n-m) = 0, n >= 8; inputs: a(n), n=0..7. a(n) = 21*a(n-1) + 273*a(n-2) - 1092*a(n-3) - 1820*a(n-4) + 1092*a(n-5) + 273*a(n-6) - 21*a(n-7) - a(n-8).
a(n+1) = F(n)^7+F(n+1)^7+7*F(n)*F(n+1)*F(n+2)*[2*F(n+1)^2-(-1)^n]^2 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^7, for n>=0 (This is Theorem 2.3 (iv) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A056585 Eighth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^8, F(n)=A000045(n).
G.f.: x*p(8, x)/q(8, x) with p(8, x) := sum_{m=0..7} A056588(7, m)*x^m = (1+x)*(1 - 34*x - 458*x^2 + 2242*x^3 - 458*x^4 - 34*x^5 + x^6) and q(8, x) := sum_{m=0..9} A055870(9, m)*x^m = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)*(1 + 18*x + x^2)*(1 - 47*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..9} A055870(9, m)*a(n-m) = 0, n >= 9; inputs: a(n), n=0..8. a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
a(n+1) = 8*F(n)^2*F(n+1)^2*[F(n)^4+F(n+1)^4+4*F(n)^2*F(n+1)^2+3*F(n)*F(n+1)*F(n+2)]-[F(n)^8+F(n+2)^8]+2*[2*F(n+1)^2-(-1)^n]^4 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^8, for n>=0 (This is Theorem 2.2 (vii) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

A217471 Partial sum of fifth power of the even-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 244, 33012, 4117113, 507401488, 62424765712, 7678070811369, 944346243245076, 116147016764564500, 14285140634333292625, 1756956185432949082176, 216091326285380812359744, 26577476188001703626949937
Offset: 0

Views

Author

Wolfdieter Lang, Oct 11 2012

Keywords

Comments

For the o.g.f. for general powers of Fibonacci numbers F=A000045 see A056588 (row polynomials as numerators) and A055870 (row polynomials as denominator). The even part of the bisection leads to the o.g.f. for powers of F(2*n), and the partial sums of these powers are then given by dividing this o.g.f. by (1-x). For the o.g.f.s for F(n)^5 and F(2*n)^5 see A056572 and A215044, respectively.
The tables of the coefficient of the polynomials which appear in Ozeki's formula and in Melham's conjecture are found in A217472 and A217475, respectively (see References).

Examples

			a(2) = 244 = 2*(8-3)/5 - 610/20 + (832040-6765)/55^2 - 7/22.
a(2) = 244 = (1/11)*5^5 - (15/44)*5^3 + (25/44)*5 - 7/22.
a(2) = 244 = (5-1)^2*(4*5^3 + 8*5^2 - 3*5 - 14)/44
           = (4*5^3 + 8*5^2 - 3*5 - 14)*(4/11).
		

Crossrefs

Cf. A163198 (third powers).

Programs

  • Mathematica
    Table[Sum[Fibonacci[2*k]^5, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Apr 12 2017 *)
    Accumulate[Fibonacci[Range[0,30,2]]^5] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    a(n) = sum(k=1, n, fibonacci(2*k)^5); \\ Michel Marcus, Feb 29 2016

Formula

a(n) = Sum_{k=0..n} F(2*k)^5, n>=0.
O.g.f.: x*(1+99*x+416*x^2+99*x^3+x^4)/((1-3*x+x^2)*(1-18*x+x^2)*(1-123*x+x^2)*(1-x)).
a(n) = 2*(F(2*(n+1)) - F(2*n))/5 - F(3*(2*n+1))/20 +
(F(10*(n+1)) - F(10*n))/F(10)^2 - 7/22 (from the partial fraction decomposition of the o.g.f.).
a(n) = (1/11)*F(2*n+1)^5 - (15/44)*F(2*n+1)^3 + (25/44)*F(2*n+1) - 7/22 (from Ozeki reference, Theorem 2, p. 109 --- with a misprint -- and from Prodinger reference, p. 207).
a(n) =(F(2*n+1)-1)^2*(4*F(2*n+1)^3 + 8*F(2*n+1)^2 - 3*F(2*n+1) - 14)/44 (an example for Melham's conjecture, see the reference, eq. (2.7) for m=2).

A056586 Ninth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^9, F(n)=A000045(n).
G.f.: x*p(9, x)/q(9, x) with p(9, x) := sum_{m=0..8} A056588(8, m)*x^m = 1 - 54*x - 1413*x^2 + 9288*x^3 + 17840*x^4 - 9288*x^5 - 1413*x^6 + 54*x^7 + x^8 and q(9, x) := sum_{m=0..10} A055870(10, m)*x^m = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..10} A055870(10, m)*a(n-m) = 0, n >= 10; inputs: a(n), n=0..9. a(n) = 55*a(n-1) + 1870*a(n-2) - 19635*a(n-3) - 85085*a(n-4) + 136136*a(n-5) + 85085*a(n-6) - 19635*a(n-7) - 1870*a(n-8) + 55*a(n-9) + a(n-10).

A056587 Tenth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 1024, 59049, 9765625, 1073741824, 137858491849, 16679880978201, 2064377754059776, 253295162119140625, 31181719929966183601, 3833759992447475122176, 471584161164422542970449
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^10, F(n)=A000045(n).
G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001

A305695 Triangle T(n,k) read by rows: fibonomial coefficients sums triangle.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 7, 9, 4, 1, 12, 24, 19, 6, 1, 20, 64, 79, 46, 9, 1, 33, 168, 339, 306, 113, 14, 1, 54, 441, 1431, 2126, 1205, 287, 22, 1, 88, 1155, 6072, 14502, 13581, 4928, 736, 35, 1, 143, 3025, 25707, 99587, 149717, 90013, 20371, 1905, 56, 1
Offset: 0

Views

Author

Tony Foster III, Jul 09 2018

Keywords

Comments

The triangle coefficients give sums of Fibonacci powers when multiplied with Lang triangle coefficients and summed (see 2nd formula).

Examples

			n\k|   0    1     2     3      4     5     6    7  8 9
---+--------------------------------------------------
0  |   1
1  |   2    1
2  |   4    3     1
3  |   7    9     4     1
4  |  12   24    19     6      1
5  |  20   64    79    46      9     1
6  |  33  168   339   306    113    14     1
7  |  54  441  1431  2126   1205   287    22    1
8  |  88 1155  6072 14502  13581  4928   736   35  1
9  | 143 3025 25707 99587 149717 90013 20371 1905 56 1
		

Crossrefs

Programs

  • PARI
    f(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j));
    T(n, k) = if (n< 0, 0, T(n-1, k) + f(n+1, k+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

Formula

T(n, k) = T(n-1, k) + A010048(n+1, k+1).
Sum_{t=0..n-1} A056588(n-1, n-1-t) * T(k+t, n-1) = Sum_{j=1..k+1} F(j)^n.

Extensions

More terms from Michel Marcus, Jul 20 2018
Previous Showing 11-17 of 17 results.