cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A129324 Third column of PE^2.

Original entry on oeis.org

0, 0, 1, 6, 36, 220, 1410, 9534, 68040, 511704, 4046310, 33560010, 291244668, 2638581972, 24901833866, 244333004790, 2487900487440, 26245651191600, 286408960814862, 3228529392965250, 37544229610105220, 449858650676764140
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,3]; with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,3].
E.g.f.: (x^2/2) * exp(2 * (exp(x) - 1)). - Ilya Gutkovskiy, Jul 11 2020

Extensions

More terms from R. J. Mathar, May 30 2008

A129325 Fourth column of PE^2.

Original entry on oeis.org

0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,4] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,4]

Extensions

More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A129327 Second column of PE^3.

Original entry on oeis.org

0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129328 Third column of PE^3.

Original entry on oeis.org

0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129329 Fourth column of PE^3.

Original entry on oeis.org

0, 0, 0, 1, 12, 120, 1140, 10815, 104496, 1037484, 10627560, 112508550, 1231481460, 13933510734, 162864103584, 1965078765195, 24453461392080, 313549334233440, 4138796594051568, 56188737057169593, 783876449182595400
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,4]
E.g.f.: (x^3/6) * exp(3 * (exp(x) - 1)). - Ilya Gutkovskiy, Jul 11 2020

Extensions

More terms from R. J. Mathar, May 30 2008

A129331 Second column of PE^4.

Original entry on oeis.org

0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129332 Third column of PE^4.

Original entry on oeis.org

0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129333 Fourth column of PE^4.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,4]

Extensions

More terms from R. J. Mathar, May 30 2008

A283424 Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, May 14 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
      1;
      2,     1;
      5,     3,    1;
     15,    10,    4,    1;
     52,    37,   17,    5,    1;
    203,   151,   76,   26,    6,   1;
    877,   674,  362,  137,   37,   7,  1;
   4140,  3263, 1842,  750,  225,  50,  8, 1;
  21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000110(n+1), A138378 or A005493(n-1), A124325, A288785, A288786, A288787, A288788, A288789, A288790, A288791, A288792.
Row sums give A124427(n+1).
T(2n,n) gives A286896.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k>n, 0,
          binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)

Formula

T(n,k) = Sum_{j=0..n-k} binomial(n,j) * Bell(j).
T(n,k) = Bell(n+1) - Sum_{j=0..k-1} binomial(n,j) * Bell(n-j).
T(n,k) = Sum_{j=k..n} A056857(n+1,j) = Sum_{j=k..n} A056860(n+1,n+1-j).
Sum_{k=0..n} T(n,k) = n*Bell(n)+Bell(n+1) = A124427(n+1).
Sum_{k=1..n} T(n,k) = n*Bell(n) = A070071(n).
T(n,0)-T(n,1) = Bell(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A224271(n+1). - Alois P. Heinz, May 17 2023

A139383 Number of n-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 2, 12, 154, 3455, 120196, 5995892, 406005804, 35839643175, 3998289746065, 550054365477936, 91478394767427823, 18091315306315315610, 4196205472500769304318, 1128136777063831105273242, 347994813261017613045578964, 122080313159891715442898099217
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2008

Keywords

Comments

Define the matrix function matexps(M) to be exp(M)/exp(1). Then the number of k-level labeled rooted trees with n leaves is also column 0 of the triangle resulting from the n-th iteration of matexps on the Pascal matrix P, A007318. The resulting triangle is also S^n*P*S^-n, where S is the Stirling2 matrix A048993. This function can be coded in PARI as sum(k=0,200,1./k!*M^k)/exp(1), using exp(M) does not work. See A056857, which equals (1/e)*exp(P) or S*P*S^-1. - Gerald McGarvey, Aug 19 2009

Examples

			If we form a table from the family of sequences defined by:
number of k-level labeled rooted trees with n leaves,
then this sequence equals the diagonal in that table:
n=1:A000012=[1,1,1,1,1,1,1,1,1,1,...];
n=2:A000110=[1,2,5,15,52,203,877,4140,21147,115975,...];
n=3:A000258=[1,3,12,60,358,2471,19302,167894,1606137,...];
n=4:A000307=[1,4,22,154,1304,12915,146115,1855570,26097835,...];
n=5:A000357=[1,5,35,315,3455,44590,660665,11035095,204904830,...];
n=6:A000405=[1,6,51,561,7556,120196,2201856,45592666,1051951026,...];
n=7:A001669=[1,7,70,910,14532,274778,5995892,148154860,4085619622,...];
n=8:A081624=[1,8,92,1380,25488,558426,14140722,406005804,13024655442,...];
n=9:A081629=[1,9,117,1989,41709,1038975,29947185,979687005,35839643175,..].
Row n in the above table equals column 0 of matrix power A008277^n where A008277 = triangle of Stirling numbers of 2nd kind:
1;
1,1;
1,3,1;
1,7,6,1;
1,15,25,10,1;
1,31,90,65,15,1; ...
The name of this sequence is a generalization of the definition given in the above sequences by _Christian G. Bower_.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2015
    # second Maple program:
    g:= x-> exp(x)-1:
    a:= n-> n! * coeff(series(1+(g@@n)(x), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 31 2017
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, `if`(n<2, 1, 0),
         `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    t[n_,m_]:=t[n,m] = If[m==1,1,Sum[StirlingS2[n,k]*t[k,m-1],{k,1,n}]]; Table[t[n,n],{n,1,20}] (* Vaclav Kotesovec, Aug 14 2015 after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if m=1 then 1 else sum(stirling2(n,i)*T(i,m-1),i,1,n);
    makelist(T(n,n),n,1,7); /* Vladimir Kruchinin, May 19 2012 */
    
  • PARI
    {a(n)=local(E=exp(x+x*O(x^n))-1,F=x); for(i=1,n,F=subst(F,x,E));n!*polcoeff(F,n)}
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n - 1)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017, after Maple code

Formula

a(n) = T(n,n), T(n,m) = Sum_{i=1..n} Stirling2(n,i)*T(i,m-1), m>1, T(n,1)=1. - Vladimir Kruchinin, May 19 2012
a(n) = n! * [x^n] 1 + g^n(x), where g(x) = exp(x)-1. - Alois P. Heinz, Aug 14 2015
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 2.86539...
a(n) ~ exp(-1) * A261280(n).
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2017
Previous Showing 11-20 of 33 results. Next