A139620
a(n) = 190*n + 20.
Original entry on oeis.org
20, 210, 400, 590, 780, 970, 1160, 1350, 1540, 1730, 1920, 2110, 2300, 2490, 2680, 2870, 3060, 3250, 3440, 3630, 3820, 4010, 4200, 4390, 4580, 4770, 4960, 5150, 5340, 5530, 5720, 5910, 6100, 6290, 6480, 6670, 6860, 7050, 7240, 7430
Offset: 0
A321156
Numbers that have exactly 5 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
Original entry on oeis.org
561, 1485, 1701, 2016, 2556, 2601, 2850, 3025, 3060, 3256, 3321, 4186, 4761, 4851, 5226, 5320, 5565, 5841, 6175, 6216, 6336, 6525, 6670, 7425, 7821, 7840, 8001, 8100, 8625, 8646, 9730, 9856, 9945, 9976, 10116, 10296, 10450, 10585, 11025, 11305, 11340, 12025, 12090
Offset: 1
561 has representations P(3, 188)=P(6, 39)=P(11, 12)=P(17, 6)=P(33, 3).
1485 has representations P(3, 496)=P(5, 150)=P(9, 43)=P(15, 16)=P(54, 3).
1701 has representations P(3, 568)=P(6, 115)=P(9, 49)=P(18, 13)=P(21, 10).
Cf.
A275256,
A057145,
A063778,
A129654,
A139601,
A177029,
A195527,
A195528,
A321157,
A321158,
A321159,
A321160,
A320943.
-
isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 5; \\ Michel Marcus, Oct 29 2018
-
is(n) = my(d=divisors(n<<1)); sum(i=2, #d, k=2*(d[i]^2 - 2 * d[i] + n) / (d[i] - 1) / d[i]; k == k\1 && min(d[i], k) >=3) == 5 \\ David A. Corneth, Oct 29 2018
A321157
Numbers that have exactly 7 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
Original entry on oeis.org
11935, 12376, 21736, 24220, 41041, 45441, 51360, 52326, 53361, 54145, 54405, 58311, 58696, 73360, 82720, 89425, 90321, 96580, 101025, 102025, 108801, 113050, 117216, 118405, 122265, 122500, 122760, 123201, 123256, 127281, 128961, 135201, 144585, 152076, 165376, 166635, 169456, 174097
Offset: 1
11935 has representations P(n,k) = P(5, 1195) = P(7, 570) = P(10, 267) = P(14, 133) = P(35, 22) = P(55, 10) = P(154, 3).
12376 has representations P(n,k) = P(4, 2064) = P(7, 591) = P(16, 105) = P(26, 40) = P(34, 24) = P(56, 10) = P(91, 5).
21736 has representations P(n,k) = P(4, 3624) = P(8, 778) = P(11, 397) = P(16, 183) = P(19, 129) = P(22, 96) = P(208, 3).
Cf.
A275256,
A057145,
A063778,
A129654,
A139601,
A177029,
A195527,
A195528,
A321156,
A321158,
A321159,
A321160,
A320943.
A321158
Numbers that have exactly 8 representations as a k-gonal number, P(m,k) = m*((k-2)*m - (k-4))/2, k and m >= 3.
Original entry on oeis.org
11781, 61776, 75141, 133056, 152361, 156520, 176176, 179740, 188650, 210925, 241605, 266085, 292825, 298936, 338625, 342585, 354025, 358281, 360801, 365365, 371925, 391392, 395200, 400960, 417340, 419805, 424270, 438516
Offset: 1
a(1) 11781 has representations P(m,k) = P(3, 3928)=P(6, 787)=P(9,329)=P(11, 216)=P(21, 58)=P(63, 8)=P(77, 6)=P(153, 3).
a(2) 61776 has representations P(m,k) = P(3, 20593)=P(6, 4120)=P(8,2208)=P(11, 1125)=P(26, 192)=P(36, 100)=P(176, 6)=P(351, 3).
a(3) 75141 has representations P(m,k) = P(3, 25048)=P(6, 5011)=P(9,2089)=P(11, 1368)=P(18, 493)=P(27, 216)=P(66, 37)=P(69, 34).
Cf.
A275256,
A057145,
A063778,
A129654,
A139601,
A177029,
A195527,
A195528,
A321156,
A321157,
A321159,
A321160,
A320943.
-
r[n_] := Module[{k}, Sum[Boole[d >= 3 && (k = 2(d^2 - 2d + n)/(d^2 - d); IntegerQ[k] && k >= 3)], {d, Divisors[2n]}]];
Select[Range[500000], r[#] == 8&] (* Jean-François Alcover, Sep 23 2019, after Andrew Howroyd *)
-
r(n)={sumdiv(2*n, d, if(d>=3, my(k=2*(d^2 - 2*d + n)/(d^2 - d)); !frac(k) && k>=3))}
for(n=1, 5*10^5, if(r(n)==8, print1(n, ", "))) \\ Andrew Howroyd, Nov 26 2018
-
# See link.
A321159
Numbers that have exactly 9 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
Original entry on oeis.org
27405, 126225, 194481, 201825, 273105, 478401, 538461, 615681, 718641, 859600, 862785, 1056160, 1187145, 1257201, 1328481, 1413126, 1439361, 1532601, 1540540, 1619541, 1625625, 1708785, 1842400, 1849926, 1890945
Offset: 1
a(1) 27405 has representations P(n,k) = P(3, 9136)=P(5, 2742)=P(9, 763)=P(14, 303)=P(18, 181)=P(27, 80)=P(35, 48)=P(63, 16)=P(105, 7).
a(2) 126225 has representations P(n,k) = P(3, 42076)=P(5, 12624)=P(9, 3508)=P(15, 1204)=P(17, 930)=P(33, 241)=P(50, 105)=P(99, 28)=P(225, 7).
a(3) 194481 has representations P(n,k) = P(3, 64828)=P(6, 12967)=P(9, 5404)=P(14, 2139)=P(18, 1273)=P(21, 928)=P(27, 556)=P(81, 62)=P(441, 4).
Cf.
A275256,
A057145,
A063778,
A129654,
A139601,
A177029,
A195527,
A195528,
A321156,
A321157,
A321158,
A321160,
A320943.
-
isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 9; \\ Michel Marcus, Nov 02 2018
-
# See Erling link.
A321160
Numbers that have exactly 10 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
Original entry on oeis.org
220780, 519156, 1079001, 1154440, 1324576, 1447551, 2429505, 2454705, 2491776, 2603601, 2665125, 2700621, 2772225, 2953665, 3000025, 3086721, 3316600, 3665376, 4488561, 4741660, 5142501, 5388201, 5785101, 6076225
Offset: 1
a(1) 220780 has representations P(n,k) = P(4, 36798) = P(7, 10515) = P(10, 4908) = P(14, 2428) = P(19, 1293) = P(28, 586) = P(35, 373) = P(38, 316) = P(40, 285) = P(664, 3).
a(2) 519156 has representations P(n,k) = P(3, 173053) = P(6, 34612) = P(8, 18543) = P(11, 9441) = P(27, 1481) = P(36, 826) = P(66, 244) = P(92, 126) = P(99, 109) = P(456, 7).
a(3) 1079001 has representations P(n,k) = P(3, 359668) = P(6, 71935) = P(9, 29974) = P(11, 19620) = P(14, 11859) = P(21, 5140) = P(27, 3076) = P(66, 505) = P(81, 335) = P(126, 139).
Cf.
A275256,
A057145,
A063778,
A129654,
A139601,
A177029,
A195527,
A195528,
A321156,
A321157,
A321158,
A321159,
A320943.
-
isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 10; \\ Michel Marcus, Nov 02 2018
-
# See links.
A373711
Numbers that are simultaneously k-gonal and k-gonal pyramidal for some k >= 3.
Original entry on oeis.org
0, 1, 10, 120, 175, 441, 946, 1045, 1540, 4900, 5985, 7140, 23001, 23725, 48280, 195661, 245905, 314755, 801801, 975061, 1169686, 3578401, 10680265, 27453385, 55202400, 63016921, 101337426, 132361021, 197427385, 258815701, 432684460, 477132085, 837244045
Offset: 1
4900 is a term because it is both the 70th square and the 24th square pyramidal number.
A374370
Square array read by antidiagonals: the n-th row lists n-gonal numbers that are products of smaller n-gonal numbers.
Original entry on oeis.org
1, 4, 1, 6, 36, 1, 8, 45, 16, 1, 9, 210, 36, 10045, 1, 10, 300, 64, 11310, 2850, 1, 12, 378, 81, 20475, 61776, 6426, 1, 14, 630, 100, 52360, 79800, 9828, 1408, 1, 15, 780, 144, 197472, 103740, 35224, 61920, 265926, 1, 16, 990, 196, 230300, 145530, 60606, 67200, 391950, 69300, 1
Offset: 2
Array begins:
n=2: 1, 4, 6, 8, 9, 10, 12, 14
n=3: 1, 36, 45, 210, 300, 378, 630, 780
n=4: 1, 16, 36, 64, 81, 100, 144, 196
n=5: 1, 10045, 11310, 20475, 52360, 197472, 230300, 341055
n=6: 1, 2850, 61776, 79800, 103740, 145530, 437580, 719400
n=7: 1, 6426, 9828, 35224, 60606, 1349460, 2077992, 3333330
n=8: 1, 1408, 61920, 67200, 276640, 297045, 870485, 1022000
n=9: 1, 265926, 391950, 1096200, 1767546, 1787500, 9909504, 28123200
n=10: 1, 69300, 1297890, 4257000, 5756400, 9140040, 9729720, 10648800
n=11: 1, 79135, 792330, 2382380, 5570565, 15361500, 22230000, 49888395
n=12: 1, 9504, 45696, 604128, 1981980, 2208465, 4798080, 13837824
A062707
Table by antidiagonals of n*k*(k+1)/2.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 6, 3, 0, 0, 10, 12, 9, 4, 0, 0, 15, 20, 18, 12, 5, 0, 0, 21, 30, 30, 24, 15, 6, 0, 0, 28, 42, 45, 40, 30, 18, 7, 0, 0, 36, 56, 63, 60, 50, 36, 21, 8, 0, 0, 45, 72, 84, 84, 75, 60, 42, 24, 9, 0, 0, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 0
Offset: 0
0 0 0 0 0 0 0 0 0
0 1 3 6 10 15 21 28 36
0 2 6 12 20 30 42 56 72
0 3 9 18 30 45 63 84 108
0 4 12 24 40 60 84 112 144
0 5 15 30 50 75 105 140 180
0 6 18 36 60 90 126 168 216
0 7 21 42 70 105 147 196 252
0 8 24 48 80 120 168 224 288
-
Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1,2)))); # G. C. Greubel, Sep 02 2019
-
[k*Binomial(n-k+1,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2019
-
seq(seq(k*binomial(n-k+1,2), k=0..n), n=0..12); # G. C. Greubel, Sep 02 2019
-
Table[k*Binomial[n-k+1, 2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 02 2019 *)
-
T(n,k) = k*binomial(n-k+1,2);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 02 2019
-
[[k*binomial(n-k+1,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 02 2019
A139609
a(n) = 36*n + 9.
Original entry on oeis.org
9, 45, 81, 117, 153, 189, 225, 261, 297, 333, 369, 405, 441, 477, 513, 549, 585, 621, 657, 693, 729, 765, 801, 837, 873, 909, 945, 981, 1017, 1053, 1089, 1125, 1161, 1197, 1233, 1269, 1305, 1341, 1377, 1413, 1449, 1485, 1521, 1557, 1593, 1629, 1665, 1701
Offset: 0
-
[9*(4*n + 1): n in [0..60]]; // Vincenzo Librandi, Jul 23 2011
-
Range[9, 7000, 36] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2011 *)
36*Range[0,50]+9 (* or *) LinearRecurrence[{2,-1},{9,45},50] (* Harvey P. Dale, Jan 04 2018 *)
-
a(n)=36*n+9 \\ Charles R Greathouse IV, Oct 05 2011
Comments