cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 101 results. Next

A386424 Numbers k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 5, 12, 13, 26, 29, 37, 41, 44, 56, 61, 73, 74, 76, 90, 101, 109, 113, 122, 137, 146, 153, 157, 172, 173, 181, 193, 218, 229, 236, 257, 268, 277, 281, 312, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 522, 524, 528, 541, 554, 560, 569, 601, 613, 617, 626, 641, 652, 653
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

Conjecture 1: the initial 1 is the only square in this sequence, and a(2) = 2 is the only term that is twice a square.
Conjecture 2: A323653 is a subsequence (which would follow from conjecture 1 (c) given there).

Crossrefs

Subsequences: A323653 (conjectured), A351549, A386425 (odd composites), A386426 (nondeficient terms).
Cf. also A006872, A351446, A387158.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[653],a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386424(n) = (A057521(sigma(n))==A057521(n));

Formula

{k | A057521(A000203(k)) = A057521(k)}, or equally, {k | A387156(k) = A003557(k)}.

A386425 Odd composites k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

153, 801, 1773, 3725, 4689, 4753, 5013, 6957, 8577, 8725, 9549, 9873, 11493, 13437, 14409, 15381, 18621, 19269, 21213, 21537, 23481, 25101, 26073, 26225, 28989, 29161, 29313, 29961, 32229, 33849, 34173, 36117, 38061, 39033, 40653, 42597, 43893, 47457, 47781, 48725, 48753, 51669, 52317, 54261, 56953, 57177, 57501
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

By definition, the sequence contains all odd perfect numbers, and also includes any hypothetical odd triperfect number that is not a multiple of 3 (see A005820 and A347391), and similarly, any odd term of A046060 that is not a multiple of 5, etc. If there are no squares in this sequence (see conjecture in A386424), then the latter categories of numbers certainly do not exist, and this is then a subsequence of A228058.
The first nondeficient term is a(32315) = 81022725. See A386426.

Crossrefs

Intersection of A071904 and A386424.
Nonsquare terms form a subsequence of A228058.
Cf. A000203, A003557, A057521, A386426 (nondeficient terms).
Cf. also A324647, A349749.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[9,57501,2],!PrimeQ[#]&&a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386425(n) = ((n>1) && (n%2) && !isprime(n) && (A057521(sigma(n))==A057521(n)));

Formula

{k | k is odd composite and A003557(A000203(k)) = A003557(k)}.

A191622 Decimal expansion of the growth constant for the partial sums of maximal unitary squarefree divisors.

Original entry on oeis.org

6, 4, 9, 6, 0, 6, 6, 9, 9, 3, 3, 7, 3, 4, 1, 1, 9, 4, 7, 3, 3, 9, 0, 4, 8, 8, 0, 4, 8, 0, 2, 1, 2, 1, 2, 6, 7, 0, 3, 8, 1, 0, 8, 9, 9, 3, 1, 9, 8, 8, 2, 8, 8, 3, 9, 1, 8, 3, 2, 1, 0, 3, 9, 2, 6, 1, 3, 2, 0, 7, 1, 0, 4, 2, 8, 9, 5, 5, 1, 4, 6, 2, 7, 2, 0, 3, 5, 3, 5, 1, 9, 3, 7, 2, 1, 1, 9, 8, 0, 0, 7, 2, 0, 3, 8, 5
Offset: 0

Views

Author

R. J. Mathar, Jun 09 2011

Keywords

Comments

The partial sums grow Sum_{n=1..N} A055231(n) = (this constant)*N^2/2 +O(N^(3/2)).

Examples

			0.64960669933734119473390488048021212670381089931988288391832103926132071...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 0, 2, 0, -1}, {0, -2, 0, 2, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Jun 19 2019 *)
  • PARI
    prodeulerrat(1 - (p^2+p-1)/(p^3*(p+1))) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Product_{primes p=2,3,5,7,...} ( 1 - (p^2+p-1)/(p^3*(p+1)) ).
The constant d2 in the paper by Cloutier et al. such that Sum_{k=1..x} 1/A057521(x) = d2*x + O(x^(1/2)). - Amiram Eldar, Oct 01 2019

Extensions

More terms from Amiram Eldar, Jun 19 2019
More terms from Vaclav Kotesovec, Jun 13 2021

A295879 Multiplicative with a(p) = 1, a(p^e) = prime(e-1) if e > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 3, 2, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

This sequence can be used as a filter. It matches at least to the following sequences related to the counting of various non-unitary prime divisors:
For all i, j:
a(i) = a(j) => A056170(i) = A056170(j), as A056170(n) = A001222(a(n)).
a(i) = a(j) => A162641(i) = A162641(j).
a(i) = a(j) => A295659(i) = A295659(j).
a(i) = a(j) => A295662(i) = A295662(j).
a(i) = a(j) => A295883(i) = A295883(j), as A295883(n) = A007949(a(n)).
a(i) = a(j) => A295884(i) = A295884(j).
An encoding of the prime signature of A057521(n), the powerful part of n. - Peter Munn, Apr 06 2024

Crossrefs

Differs from A000688 for the first time at n=128, where a(128) = 13, while A000688(128) = 15.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, e == 1, 1, True, Prime[e - 1]]] &, 128] (* Michael De Vlieger, Nov 29 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, prime(f[i,2]-1)));} \\ Amiram Eldar, Nov 18 2022

Formula

a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product A008578(e(i)).
a(n) = A064989(A181819(n)).
a(n) = A181819(A003557(n)). - Antti Karttunen, Apr 03 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^2 + Sum_{k>=1} (prime(k+1)-prime(k))/p^(k+2)) = 2.208... . - Amiram Eldar, Nov 18 2022

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A360902 Numbers with the same number of squarefree divisors and powerful divisors.

Original entry on oeis.org

1, 4, 9, 25, 36, 48, 49, 80, 100, 112, 121, 162, 169, 176, 196, 208, 225, 272, 289, 304, 361, 368, 405, 441, 464, 484, 496, 529, 567, 592, 656, 676, 688, 720, 752, 841, 848, 891, 900, 944, 961, 976, 1008, 1053, 1072, 1089, 1136, 1156, 1168, 1200, 1225, 1250, 1264
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2023

Keywords

Comments

Numbers k such that A034444(k) = A005361(k).
Numbers whose squarefree kernel (A007947) and powerful part (A057521) have the same number of divisors (A000005).
If k and m are coprime terms, then k*m is also a term.
All the terms are exponentially 2^n-numbers (A138302).
The characteristic function of this sequence depends only on prime signature.
Numbers whose canonical prime factorization has exponents whose geometric mean is 2.
Equivalently, numbers of the form Product_{i=1..m} p_i^(2^k_i), where p_i are distinct primes, and Sum_{i=1..m} k_i = m (i.e., the exponents k_i have an arithmetic mean 1).
1 is the only squarefree (A005117) term.
Includes the squares of squarefree numbers (A062503), which are the powerful (A001694) terms of this sequence.
The squares of primes (A001248) are the only terms that are prime powers (A246655).
Numbers of the for m*p^(2^k), where m is squarefree, p is prime, gcd(m, p) = 1 and omega(m) = k - 1, are all terms. In particular, this sequence includes numbers of the form p^4*q, where p != q are primes (A178739), and numbers of the form p^8*q*r where p, q, and r are distinct primes (A179747).
The corresponding numbers of squarefree (or powerful) divisors are 1, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, ... . The least term with 2^k squarefree divisors is A360903(k).

Examples

			4 is a term since it has 2 squarefree divisors (1 and 2) and 2 powerful divisors (1 and 4).
36 is a term since it has 4 squarefree divisors (1, 2, 3 and 6) and 4 powerful divisors (1, 4, 9 and 36).
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ e == 2^Length[e]]; q[1] = True; Select[Range[1300], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, e[i]) == 2^#e; }

A368040 The powerful part of the nonsquarefree numbers.

Original entry on oeis.org

4, 8, 9, 4, 16, 9, 4, 8, 25, 27, 4, 32, 36, 8, 4, 9, 16, 49, 25, 4, 27, 8, 4, 9, 64, 4, 72, 25, 4, 16, 81, 4, 8, 9, 4, 32, 49, 9, 100, 8, 108, 16, 4, 9, 8, 121, 4, 125, 9, 128, 4, 27, 8, 4, 144, 49, 4, 25, 8, 9, 4, 32, 81, 4, 8, 169, 9, 4, 25, 16, 36, 8, 4, 27
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A057521 that are larger than 1, since A057521(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powPart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[powPart, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A057521(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = d/(3*(1-1/zeta(2))^(3/2)) = 4.778771..., and d = A328013.

A368167 The largest unitary divisor of n that is a cubefull exponentially odd number (A335988).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A056191 and A366126 at n = 32, and from A367513 at n = 64.
Also, the largest exponentially odd unitary divisor of the powerful part on n.
Also, the powerful part of the largest exponentially odd unitary divisor of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 || !(f[i, 2]%2), 1, f[i, 1]^f[i, 2]));}

Formula

Multiplicative with a(p^e) = p^e if e is odd that is larger than 1, and 1 otherwise.
a(n) = A350389(A057521(n)).
a(n) = A057521(A350389(n)).
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= n, with equality if and only if n is in A335988.

A372603 The maximal exponent in the prime factorization of the powerful part of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A275812 at n = 36, and from A212172 at n = 37.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, n]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = if(n == 1, 0, n);
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A057521(n)).
a(n) = A087156(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 1/zeta(2) + Sum_{i>=2} (1 - 1/zeta(i)) = A033150 - A059956 = 1.09728403825134113562... .

A382906 The powerful part of the n-th biquadratefree number.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 25, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 1, 9, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2025

Keywords

Crossrefs

Similar sequences: A382902, A382903, A382904, A382905.

Programs

  • Mathematica
    f[p_, e_] := p^If[e > 1, e, 0]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 4 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 4, print1(prod(i = 1, #f~, f[i, 1]^if(f[i, 2] > 1, f[i, 2], 0)), ", ")));}

Formula

a(n) = A057521(A046100(n)).
a(n) = A046100(n)/A382905(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(4)^(3/2) * Product_{p prime} (1 + 2/p^(3/2) - 1/p^2 - 2/p^(5/2)) = 2.21177275344948791706... .
Previous Showing 51-60 of 101 results. Next