cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A057530 n is odd and divisible by number of divisors of n and sum of digits of n.

Original entry on oeis.org

1, 9, 225, 441, 1521, 2025, 2601, 12321, 40401, 62001, 99225, 103041, 251001, 321489, 585225, 893025, 1022121, 1108809, 1212201, 1320201, 1946025, 2368521, 2480625, 2772225, 3101121, 3744225, 4473225, 4862025, 5517801, 6125625
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Comments

For most values (except 9,2025 and 99225) number of divisors of n = sum of digits of n, see A057531.
The above comment is wrong: for 16 out of the first 34 terms of the sequence, the number of divisors of n does not equal the sum of the digits of n. - Harvey P. Dale, Dec 31 2015
Since A000005(n) is odd, n must be a square. - Robert Israel, Oct 31 2019

Crossrefs

Programs

  • Magma
    [k:k in [1..6000001 by 2]| IsIntegral(k/NumberOfDivisors(k)) and IsIntegral(k/&+Intseq(k))]; // Marius A. Burtea, Oct 31 2019
  • Maple
    filter:= proc(m) local n;
      n:= m^2;
      n mod numtheory:-tau(n) = 0 and n mod convert(convert(n,base,10),`+`) = 0
    end proc:
    map(`^`, select(filter, [seq(i,i=1..10000,2)]),2); # Robert Israel, Oct 31 2019
  • Mathematica
    Select[Range[1,5*10^6,2],Divisible[#,DivisorSigma[0,#]] && Divisible[ #,Total[ IntegerDigits[#]]]&] (* Harvey P. Dale, Dec 31 2015 *)

Extensions

More terms from Harvey P. Dale, Dec 31 2015

A075491 Sum of digits of n minus number of divisors of n.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 5, 4, 6, -3, 0, -3, 2, 1, 2, 2, 6, 3, 8, -4, -1, 0, 3, -2, 4, 4, 5, 4, 9, -5, 2, -1, 2, 3, 4, 0, 8, 7, 8, -4, 3, -2, 5, 2, 3, 6, 9, 2, 10, -1, 2, 1, 6, 1, 6, 3, 8, 9, 12, -6, 5, 4, 3, 3, 7, 4, 11, 8, 11, -1, 6, -3, 8, 7, 6, 7, 10, 7, 14, -2, 4, 6, 9, 0, 9, 10, 11, 8, 15, -3, 6, 5, 8, 9, 10, 3, 14, 11, 12, -8, 0, -5, 2, -3, -2, 3, 6, -3, 8, -6
Offset: 1

Views

Author

Labos Elemer, Sep 26 2002

Keywords

Examples

			a[n]<0, see A075492, n=10, 20, 30, ... a[n]=0, see A057531, primes like 2, 11, 101 a[n]>0, see A075493, majority of primes and others
		

Crossrefs

Programs

  • Mathematica
    sud[x_] := Apply[Plus, IntegerDigits[x]] Table[sud[w]-DivisorSigma[0, w], {w, 1, 128}]
    f[n_]:=Total[IntegerDigits[n]]-DivisorSigma[0,n];Array[f,130] (* Harvey P. Dale, Aug 10 2011 *)

Formula

a(n)=A007953[n]-A000005[n]

A113761 Numbers k such that the number of divisors of k equals both the sum and the product of digits of k in base 10.

Original entry on oeis.org

1, 2, 22, 2114, 11222, 21122, 22211, 112116, 121116, 1111143, 1413111, 3411111, 11111128, 11111821, 11112118, 11121231, 11811112, 13111212, 18111112, 21111118, 21111181, 21121113, 23111121, 111112119, 111119211, 192111111
Offset: 1

Views

Author

Giovanni Resta, Jan 18 2006

Keywords

Comments

Intersection of A074312 and A057531.

Examples

			2114 is a term since 2+1+1+4 = 2*1*1*4 = 8 and 2114 has 8 divisors, {1, 2, 7, 14, 151, 302, 1057, 2114}.
		

Crossrefs

Programs

  • Mathematica
    L={};Do[d=IntegerDigits@n; p=Times@@d; If[p==Plus@@d && p==DivisorSigma[0, n], AppendTo[L, n];Print[n]], {n, 1000000}];L
    lst = {}; fQ[n_] := (id = IntegerDigits@n; Plus @@ id == Times @@ id == DivisorSigma[0, n]); Do[ If[ fQ@n, AppendTo[lst, n]], {n, 2*10^8}]; lst

Extensions

a(13)-a(26) from Robert G. Wilson v, Jan 19 2006

A263720 Palindromic numbers such that the sum of the digits equals the number of divisors.

Original entry on oeis.org

1, 2, 11, 22, 101, 202, 444, 525, 828, 1111, 2222, 4884, 5445, 5775, 12321, 13431, 18081, 21612, 24642, 26862, 31213, 44244, 44844, 51415, 52425, 56265, 62426, 80008, 86868, 89298, 99099, 135531, 162261, 198891, 217712, 237732, 301103, 343343, 480084, 486684, 512215, 521125
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2015

Keywords

Comments

Subsequence of A002113.
A000005(a(n)) = A007953(a(n)).
The only known palindromic primes whose sum of digits equals the numbers of divisors (primes of the form 10^k + 1) are 2,11,101.

Examples

			a(3) = 11, 11 is the palindromic number, digitsum(11) = 1 + 1 = 2, sigma_0(11) = 2.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{d = IntegerDigits@ n}, And[d == Reverse@ d, Total@ d == DivisorSigma[0, n]]]; Select[Range[2^19], fQ] (* Michael De Vlieger, Oct 27 2015 *)
    Select[Range[600000],PalindromeQ[#]&&Total[IntegerDigits[#]] == DivisorSigma[ 0,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    lista(nn) = {for(n=1, nn, my(d = digits(n)); if ((Vecrev(d) == d) && (numdiv(n) == sumdigits(n)), print1(n, ", ")););} \\ Michel Marcus, Oct 25 2015

A280911 Numbers n such that sum of decimal digits of n equals number of prime divisors of n counted with multiplicity and sum of distinct decimal digits of n equals number of distinct primes dividing n.

Original entry on oeis.org

30, 102, 1002, 1012, 1210, 2001, 2120, 3010, 10002, 10030, 20001, 20112, 20120, 100012, 100030, 101020, 102010, 110020, 110120, 120001, 121120, 200001, 200120, 211100, 221120, 230010, 300010, 320320, 400010, 400140, 1000002, 1000012, 1000140, 1000230, 1001020, 1003002, 1004010, 1010120, 1011300, 1013310, 1021100
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 10 2017

Keywords

Comments

Numbers n such that A007953(n) = A001222(n) and A217928(n) = A001221(n).

Examples

			20112 is in the sequence because 20112 = 2^4*3*419  (6 prime factors, 3 distinct), 2 + 0 + 1 + 1 + 2 = 6 and 2 + 0 + 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100000], Total[IntegerDigits[#1]] == PrimeOmega[#1] && Total[Union[IntegerDigits[#1]]] == PrimeNu[#1] &]

A075494 Squares whose sum of digits exceeds the number of divisors.

Original entry on oeis.org

4, 9, 16, 25, 49, 64, 81, 121, 169, 196, 256, 289, 361, 484, 529, 625, 676, 729, 784, 841, 961, 1089, 1156, 1225, 1369, 1444, 1681, 1849, 1936, 2116, 2209, 2401, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 3969, 4096, 4225, 4489, 4624, 4761, 5041, 5329
Offset: 1

Views

Author

Labos Elemer, Sep 26 2002

Keywords

Examples

			Sequence consists mainly of squares of primes and of special composites like 33, 34, 35, 38, 44, 46.
		

Crossrefs

Programs

  • Mathematica
    sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]-DivisorSigma[0, n]; If[Greater[s, 0]&&IntegerQ[Sqrt[n]], Print[n]], {n, 1, 10000}]
    Select[Range[80]^2,Total[IntegerDigits[#]]>DivisorSigma[0,#]&] (* Harvey P. Dale, Feb 16 2020 *)

Formula

Numbers k^2 such that A007953(k^2) > A000005(k^2).

Extensions

Edited by Jon E. Schoenfield, Sep 23 2018

A351842 Numbers whose sum of digits and number of proper divisors are equal.

Original entry on oeis.org

21, 32, 50, 70, 111, 162, 168, 201, 212, 232, 250, 308, 322, 380, 384, 405, 416, 430, 456, 546, 610, 650, 690, 740, 744, 812, 832, 870, 980, 1004, 1011, 1015, 1053, 1101, 1105, 1222, 1316, 1352, 1365, 1460, 1464, 1482, 1510, 1518, 1550, 1554, 1590, 1608, 1752
Offset: 1

Views

Author

Zdenek Cervenka, Feb 21 2022

Keywords

Examples

			21 is a term since its digits sum to 2 + 1 = 3 and it has three proper divisors (1, 3, and 7).
		

Crossrefs

Programs

  • Maple
    S := n -> add(convert(n, base, 10)):
    PD := n -> nops(NumberTheory[Divisors](n)) - 1:
    a := n -> select(x -> S(x) = PD(x), [seq(1..n)])
  • Mathematica
    Select[Range[1, 1700], Total[IntegerDigits[#]] == Length[Divisors[#]] - 1 &]
  • PARI
    isok(m) = sumdigits(m) == numdiv(m) - 1; \\ Michel Marcus, Feb 21 2022
    
  • PARI
    list(nn) = forcomposite(n=1, nn, if (sumdigits(n) == (numdiv(n) - 1), print1(n, ", ")));
    list(1700);
  • Python
    from sympy import divisor_count
    def ok(n): return sum(map(int, str(n))) == divisor_count(n) - 1
    print([k for k in range(1753) if ok(k)]) # Michael S. Branicky, Feb 21 2022
    
Previous Showing 11-17 of 17 results.