cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A330199 Expansion of e.g.f. Product_{k>=1} exp(1 - exp(x^k)).

Original entry on oeis.org

1, -1, -2, 1, 1, 98, -39, 3225, 1226, 6459, 12473, 821830, -214739887, -201448561, -8997850614, -514986723363, -1310942141971, -26465356716946, -931753364233567, -1858534483400559, 167210272584038942, -7112146717031426801, 312288595642509829797
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Exp[1 - Exp[x^k]], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] k! DivisorSum[k, 1/#! &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of complementary Bell numbers (A000587).
E.g.f.: exp(-Sum_{j>=1} Sum_{i>=1} x^(i*j) / i!).
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * A057625(k) * a(n-k).

A327579 a(n) = n! * Sum_{d|n} d^(n/d) / d!.

Original entry on oeis.org

1, 4, 9, 76, 125, 4686, 5047, 389768, 1995849, 62445610, 39916811, 23574862092, 6227020813, 5667436494734, 55630647072015, 2922249531801616, 355687428096017, 2425220588831040018, 121645100408832019, 1364553980880330240020, 18677216386213152768021, 1152100749379237026969622
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! Sum[d^(n/d)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/((k - 1)! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, d^(n/d) / d!); \\ Michel Marcus, Sep 17 2019

Formula

E.g.f.: Sum_{k>=1} x^k / ((k - 1)! * (1 - k * x^k)).

A330254 Expansion of e.g.f. Sum_{k>=1} sinh(x^k).

Original entry on oeis.org

1, 2, 7, 24, 121, 840, 5041, 40320, 423361, 3659040, 39916801, 558835200, 6227020801, 87195588480, 1536517382401, 20922789888000, 355687428096001, 7469453633241600, 121645100408832001, 2453176191578112000, 59616236292028416001
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[Sinh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! DivisorSum[n, 1/#! &, OddQ[#] &], {n, 1, 21}]

Formula

E.g.f.: Sum_{k>=1} x^(2*k - 1) / ((2*k - 1)! * (1 - x^(2*k - 1))).
a(n) = n! * Sum_{d|n, d odd} 1 / d!.

A330255 Expansion of e.g.f. Sum_{k>=1} (cosh(x^k) - 1) (even powers only).

Original entry on oeis.org

1, 13, 361, 21841, 1814401, 260124481, 43589145601, 11333696774401, 3210079038566401, 1317822591538252801, 562000363888803840001, 336953340897297630105601, 201645730563302817792000001, 165147853334842304408401920001, 132994909752412012763531673600001
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Sum[Cosh[x^k] - 1, {k, 1, nmax}], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] // Rest
    Table[(2 n)! DivisorSum[n, 1/(2 #)! &], {n, 1, 15}]

Formula

E.g.f.: Sum_{k>=1} x^(2*k) / ((2*k)! * (1 - x^(2*k))) (even powers only).
a(n) = (2*n)! * Sum_{d|n} 1 / (2*d)!.

A354863 a(n) = n! * Sum_{d|n} (n/d) / d!.

Original entry on oeis.org

1, 5, 19, 121, 601, 5641, 35281, 406561, 3447361, 45420481, 439084801, 7565564161, 80951270401, 1525654690561, 20737536019201, 421943967244801, 6046686277632001, 150482493928166401, 2311256907767808001, 61410502863943833601, 1132546296081328128001
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, (n/#) / #! &]; Array[a, 21] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = n!*sumdiv(n, d, n/d/d!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k*(exp(x^k)-1))))
    
  • Python
    from math import factorial
    from sympy import divisors
    def A354863(n):
        f = factorial(n)
        return sum(f*n//d//factorial(d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 09 2022

Formula

E.g.f.: Sum_{k>0} k * (exp(x^k) - 1).
If p is prime, a(p) = 1 + p * p!.

A087905 a(n) = n! * Sum_{d|n} (d/n)^d.

Original entry on oeis.org

1, 3, 8, 36, 144, 1010, 5760, 50400, 416640, 4250232, 43545600, 553106400, 6706022400, 95865541200, 1410695430144, 22720842144000, 376610217984000, 6888030445296000, 128047474114560000, 2587520533615041024
Offset: 1

Views

Author

Vladeta Jovovic, Oct 14 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= n!*DivisorSum[n, (#/n)^# &]; Array[a, 50] (* G. C. Greubel, May 16 2018 *)
  • PARI
    {a(n)= n!*sumdiv(n, d, (d/n)^d)};
    for(n=1, 30, print1(a(n), ", ")) \\ G. C. Greubel, May 16 2018

Formula

E.g.f.: Sum_{k>0} x^k/(k-x^k).

A327243 a(n) = n! * Sum_{d|n} (-1)^(n - d) / (n/d)!.

Original entry on oeis.org

1, 1, 7, 35, 121, 479, 5041, 62159, 423361, 1844639, 39916801, 779042879, 6227020801, 43606442879, 1536517382401, 32256486662399, 355687428096001, 4259374594675199, 121645100408832001, 3568256949101644799, 59616236292028416001, 562000392047391897599
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[(-1)^(n-d)/Factorial(n div d):d in Divisors(n)]):n in [1..22]]; // Marius A. Burtea, Sep 14 2019
  • Mathematica
    a[n_] := n! Sum[(-1)^(n - d)/(n/d)!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[-(-x)^k/(k! (1 + (-x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = {n!*sumdiv(n, d, (-1)^(n - d) / (n/d)!)} \\ Andrew Howroyd, Sep 14 2019
    

Formula

E.g.f.: Sum_{k>=1} -(-x)^k / (k! * (1 + (-x)^k)).
E.g.f.: Sum_{k>=1} (-1)^k * (exp((-x)^k) - 1). [corrected by Ilya Gutkovskiy, May 14 2022]

A066387 Triangle T(n,m) (1<=m<=n) giving number of maps f:N -> N such that f^m(X)=X+n for all natural numbers X.

Original entry on oeis.org

1, 1, 2, 1, 0, 6, 1, 12, 0, 24, 1, 0, 0, 0, 120, 1, 120, 360, 0, 0, 720, 1, 0, 0, 0, 0, 0, 5040, 1, 1680, 0, 20160, 0, 0, 0, 40320, 1, 0, 60480, 0, 0, 0, 0, 0, 362880, 1, 30240, 0, 0, 1814400, 0, 0, 0, 0, 3628800, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800
Offset: 1

Views

Author

Floor van Lamoen, Dec 23 2001

Keywords

Examples

			Triangle T(n,m) begins:
  1;
  1,    2;
  1,    0,   6;
  1,   12,   0,    24;
  1,    0,   0,     0, 120;
  1,  120, 360,     0,   0, 720;
  1,    0,   0,     0,   0,   0, 5040;
  1, 1680,   0, 20160,   0,   0,    0, 40320;
  ...
		

Crossrefs

Row sums give A057625.
Main diagonal gives A000142.
m-section of column m=2-4 (for n>0) gives: A001813, A064350, A166338.

Programs

  • Mathematica
    t[n_, m_] /; Divisible[n, m] := n!/(n/m)!; t[, ] = 0; Flatten[Table[t[n, m], {n, 1, 11}, {m, 1, n}]] (* Jean-François Alcover, Nov 29 2011 *)

Formula

T(n,m) = n!/(n/m)! if m|n, T(n,m) = 0 otherwise.

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025

A332466 a(n) = n! * Sum_{d|n} mu(d) / d!.

Original entry on oeis.org

1, 1, 5, 12, 119, 241, 5039, 20160, 302400, 1784161, 39916799, 160332480, 6227020799, 43571848321, 1078831353601, 10461394944000, 355687428095999, 2143016754278400, 121645100408831999, 1196177491129420800, 42565648051390464001, 562000335730215782401
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> n! * add(mobius(d)/d!, d=divisors(n)):
    seq(a(n), n=1..23);  # Alois P. Heinz, Feb 13 2020
  • Mathematica
    Table[n! DivisorSum[n, MoebiusMu[#]/#! &], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] x^k/(k! (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n)={sumdiv(n, d, moebius(d)*n!/d!)} \\ Andrew Howroyd, Feb 13 2020

Formula

E.g.f.: Sum_{k>=1} Sum_{j>=1} mu(j) * x^(k*j) / j!.
E.g.f.: Sum_{k>=1} mu(k) * x^k / (k!*(1 - x^k)).
Previous Showing 11-20 of 30 results. Next