cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A340110 Coreful 4-abundant numbers: numbers k such that csigma(k) > 4*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

10584000, 12700800, 15876000, 19051200, 21168000, 22226400, 25401600, 29635200, 31752000, 37044000, 38102400, 42336000, 44452800, 47628000, 50803200, 52920000, 55566000, 57153600, 59270400, 63504000, 64033200, 66679200, 74088000, 76204800, 79380000, 84672000
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Analogous to A068404 as A308053 is analogous to A005101.

Examples

			10584000 is a term since csigma(10584000) = 42653520 > 4 * 10584000.
		

Crossrefs

Subsequence of A308053 and A340109.
Similar sequences: A068404, A307114.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^8], s[#] > 4*# &]

A364990 Coreful triperfect numbers: numbers k such that csigma(k) = 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

3600, 25200, 28224, 39600, 46800, 61200, 68400, 82800, 104400, 111600, 133200, 141120, 147600, 154800, 169200, 190800, 212400, 219600, 241200, 255600, 262800, 277200, 284400, 298800, 310464, 320400, 327600, 349200, 363600, 366912, 370800, 385200, 392400, 406800
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947) (the term "coreful divisor" was used by Hardy and Subbarao, 1983).
If k is a term, then also m*k is, for any squarefree m coprime to k. Thus there are infinitely many coreful triperfect numbers, and all of them can be generated from the sequence of primitive terms, which is the subsequence of powerful terms of this sequence. This sequence is c(n) = A064549(A005820(n)), i.e., the triperfect numbers (A005820), multiplied by their squarefree kernel (A007947): 3600, 28224, 1071645696, 1651818858099200, 532098668445696, 317519577357516800, ...
The asymptotic density of this sequence is Sum_{i>=1} beta(c(i))/c(i), where beta(n) = (6/Pi^2) * Product_{p|n} (p/(p+1)) = 0.0000797856... . If there are only 6 triperfect numbers, then the exact value of this density is 18575679807276818039685539/(23589576231586703755916083200 * Pi^2).

Examples

			3600 is in the sequence since its coreful divisors are {30, 60, 90, 120, 150, 180, 240, 300, 360, 450, 600, 720, 900, 1200, 1800, 3600}, whose sum is 10800 = 3 * 3600.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500000], s[#] == 3*# &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);}
    is(n) = s(n) == 3*n;

A340111 Coreful highly abundant numbers: numbers m such that csigma(m) > csigma(k) for all k < m, where csigma is the sum of the coreful divisors function (A057723).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 12, 16, 24, 32, 36, 48, 56, 64, 72, 96, 108, 128, 144, 192, 200, 216, 288, 360, 400, 432, 504, 576, 648, 720, 792, 800, 864, 1008, 1080, 1152, 1296, 1440, 1512, 1584, 1728, 1800, 1944, 2016, 2160, 2304, 2592, 2880, 3024, 3240, 3456, 3600
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Analogous to highly abundant numbers (A002093) with the sum of the coreful divisors function (A057723) instead of the sum of divisors function (A000203).

Examples

			The first 10 values of A057723(n) for n=1..10 are: 1, 2, 3, 6, 5, 6, 7, 14, 12, 10. The record values, 1, 2, 3, 6, 7 and 14 occur at 1, 2, 3, 4, 7 and 8, the first 6 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 3600}]; seq

A378997 Dirichlet inverse of A057723.

Original entry on oeis.org

1, -2, -3, -2, -5, 6, -7, 2, -3, 10, -11, 6, -13, 14, 15, 6, -17, 6, -19, 10, 21, 22, -23, -6, -5, 26, 6, 14, -29, -30, -31, 2, 33, 34, 35, 6, -37, 38, 39, -10, -41, -42, -43, 22, 15, 46, -47, -18, -7, 10, 51, 26, -53, -12, 55, -14, 57, 58, -59, -30, -61, 62, 21, -10, 65, -66, -67, 34, 69, -70, -71, -6, -73, 74, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A057723.

Programs

  • PARI
    A057723(n) = { my(f=factor(n)~); prod(i=1, #f, sigma(f[1, i]^f[2,i])-1); };
    memoA378997 = Map();
    A378997(n) = if(1==n,1,my(v); if(mapisdefined(memoA378997,n,&v), v, v = -sumdiv(n,d,if(dA057723(n/d)*A378997(d),0)); mapput(memoA378997,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA057723(n/d) * a(d).

A339983 Coreful abundant numbers (A308053) with an even sum of coreful divisors (A057723) that are not coreful Zumkeller numbers (A339979).

Original entry on oeis.org

108, 216, 432, 540, 756, 864, 972, 1000, 1080, 1188, 1404, 1512, 1728, 1836, 1944, 2000, 2052, 2160, 2376, 2484, 2744, 2808, 3000, 3024, 3132, 3348, 3456, 3672, 3780, 3888, 3996, 4000, 4104, 4320, 4428, 4644, 4752, 4860, 4968, 5076, 5488, 5616, 5724, 5940, 6000
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Examples

			108 is a term since its set of coreful divisors, {6, 12, 18, 36, 54, 108}, has an even sum, 234 > 2*108, and it cannot be partitioned into two disjoint sets of equal sum.
		

Crossrefs

Subsequence of A308053.
Similar sequences: A171641, A323341, A323342, A323343, A323344.

Programs

  • Mathematica
    q[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 0]; Select[Range[10^4], q]

A060640 If n = Product p_i^e_i then a(n) = Product (1 + 2*p_i + 3*p_i^2 + ... + (e_i+1)*p_i^e_i).

Original entry on oeis.org

1, 5, 7, 17, 11, 35, 15, 49, 34, 55, 23, 119, 27, 75, 77, 129, 35, 170, 39, 187, 105, 115, 47, 343, 86, 135, 142, 255, 59, 385, 63, 321, 161, 175, 165, 578, 75, 195, 189, 539, 83, 525, 87, 391, 374, 235, 95, 903, 162, 430, 245, 459, 107, 710, 253, 735, 273, 295, 119
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2001

Keywords

Comments

Equals row sums of triangle A143313. - Gary W. Adamson, Aug 06 2008
Equals row sums of triangle A127099. - Gary W. Adamson, Jul 27 2008
Sum of the divisors d2 from the ordered pairs of divisors of n, (d1,d2) with d1<=d2, such that d1|d2. - Wesley Ivan Hurt, Mar 22 2022

Examples

			a(4) = a(2^2) = 1 + (2)*(2) + (3)*(2^2) = 17;
a(6) = a(2)*a(3) = (1 + (2)*(2))*(1+(2)*(3)) = (5)*(7) = 35.
a(6) = tau(1) + 2*tau(2) + 3*tau(3) + 6*tau(6) = 1 + 2*2 + 3*2 + 6*4 = 35.
		

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976, p. 120.

Crossrefs

Cf. A000005, A000203, A001001, A006171, A038040 (Mobius transform), A049060, A057660, A057723, A327960 (Dirichlet inverse).
Cf. also triangles A027750, A127099, A143313.

Programs

  • Haskell
    a060640 n = sum [d * a000005 d | d <- a027750_row n]
    -- Reinhard Zumkeller, Feb 29 2012
    
  • Maple
    A060640 := proc(n) local ans, i, j; ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(1+sum((j+1)*ifactors(n)[2][i][1]^j,j=1..ifactors(n)[2][i][2])): od: RETURN(ans) end:
  • Mathematica
    a[n_] := Total[#*DivisorSigma[1, n/#] & /@ Divisors[n]];
    a /@ Range[59] (* Jean-François Alcover, May 19 2011, after Vladeta Jovovic *)
    f[p_, e_] := ((e + 1)*p^(e + 2) - (e + 2)*p^(e + 1) + 1)/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    j=[]; for(n=1,200,j=concat(j,sumdiv(n,d,n/d*sigma(d)))); j
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p*X)^2)[n]) /* Ralf Stephan */
    
  • PARI
    N=66; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j); t=1/prod(j=1,N, eta(x^(j)));
    t=log(t);t=serconvol(t,c);
    Vec(t) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    { for (n=1, 1000, write("b060640.txt", n, " ", direuler(p=2, n, 1/(1 - X)/(1 - p*X)^2)[n]); ) } /* Harry J. Smith, Jul 08 2009 */
    
  • Sage
    def A060640(n) :
        sigma = sloane.A000203
        return add(sigma(k)*(n/k) for k in divisors(n))
    [A060640(i) for i in (1..59)] # Peter Luschny, Sep 15 2012

Formula

a(n) = Sum_{d|n} d*tau(d), where tau(d) is the number of divisors of d, cf. A000005. a(n) = Sum_{d|n} d*sigma(n/d), where sigma(n)=sum of divisors of n, cf. A000203. - Vladeta Jovovic, Apr 23 2001
Multiplicative with a(p^e) = ((e+1)*p^{e+2} - (e+2)*p^{e+1} + 1) / (p-1)^2. Dirichlet g.f.: zeta(s)*zeta(s-1)^2. - Franklin T. Adams-Watters, Aug 03 2006
L.g.f.: Sum(A060640(n)*x^n/n) = -log( Product_{j>=1} P(x^j) ) where P(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, May 03 2008
G.f.: Sum_{k>=1} k*tau(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018
Sum_{k=1..n} a(k) ~ n^2/24 * ((4*gamma - 1)*Pi^2 + 2*Pi^2 * log(n) + 12*Zeta'(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 01 2019

Extensions

More terms from James Sellers, Vladeta Jovovic and Matthew Conroy, Apr 17 2001

A049060 a(n) = (-1)^omega(n)*Sum_{d|n} d*(-1)^omega(d), where omega(n) = A001221(n) is number of distinct primes dividing n.

Original entry on oeis.org

1, 1, 2, 5, 4, 2, 6, 13, 11, 4, 10, 10, 12, 6, 8, 29, 16, 11, 18, 20, 12, 10, 22, 26, 29, 12, 38, 30, 28, 8, 30, 61, 20, 16, 24, 55, 36, 18, 24, 52, 40, 12, 42, 50, 44, 22, 46, 58, 55, 29, 32, 60, 52, 38, 40, 78, 36, 28, 58, 40, 60, 30, 66, 125, 48, 20, 66, 80, 44, 24, 70
Offset: 1

Views

Author

Keywords

Comments

Might be called (-1)sigma(n). If x = Product p_i^r_i, then (-1)sigma(x) = Product (-1 + Sum p_i^s_i, s_i = 1 to r_i) = Product ((p_i^(r_i+1)-1)/(p_i-1)-2), with (-1)sigma(1) = 1. - Yasutoshi Kohmoto, May 23 2005

Crossrefs

Programs

  • Maple
    A049060 := proc(n) local it, ans, i, j; it := ifactors(n): ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(-1+sum(ifactors(n)[2][i][1]^j, j=1..ifactors(n)[2][i][2])): od: RETURN(ans) end: [seq(A049060(i),i=1..n)];
  • Mathematica
    a[p_?PrimeQ] := p-1; a[1] = 1; a[n_] := Times @@ ((#[[1]]^(#[[2]] + 1) - 2*#[[1]] + 1)/(#[[1]] - 1) & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 21 2012 *)
  • PARI
    A049060(n)={ local(i,resul,rmax,p) ; if(n==1, return(1) ) ; i=factor(n) ; rmax=matsize(i)[1] ; resul=1 ; for(r=1,rmax, p=0 ; for(j=1,i[r,2], p += i[r,1]^j ; ) ; resul *= p-1 ; ) ; return(resul) ; } { for(n=1,40, print(n," ",A049060(n)) ) ; } \\ R. J. Mathar, Oct 12 2006
    
  • PARI
    apply( A049060(n)=vecprod([(f[1]^(f[2]+1)-1)\(f[1]-1)-2 | f<-factor(n)~]), [1..99]) \\ M. F. Hasler, Sep 21 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A049060(n): return prod((p**(e+1)-2*p+1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 13 2021

Formula

a(n) = Sum_{d|n} d*(-1)^A001221(d).
Multiplicative with a(p^e) = (p^(e+1)-2*p+1)/(p-1).
Simpler: a(p^e) = (p^(e+1)-1)/(p-1)-2. - M. F. Hasler, Sep 21 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 2/p^2 + 2/p^3) = 0.4478559359... . - Amiram Eldar, Oct 25 2022

Extensions

More terms from James Sellers, May 03 2000
Better description from Vladeta Jovovic, Apr 06 2002

A330596 Decimal expansion of Product_{primes p} (1 - 1/p^2 + 1/p^3).

Original entry on oeis.org

7, 4, 8, 5, 3, 5, 2, 5, 9, 6, 8, 2, 3, 6, 3, 5, 6, 4, 6, 4, 4, 2, 1, 5, 0, 4, 8, 6, 3, 7, 9, 1, 0, 6, 0, 1, 6, 4, 1, 6, 4, 0, 3, 4, 3, 0, 0, 5, 3, 2, 4, 4, 0, 4, 5, 1, 5, 8, 5, 2, 7, 9, 3, 9, 2, 5, 9, 2, 5, 5, 8, 6, 8, 9, 5, 4, 9, 5, 8, 8, 3, 4, 2, 1, 2, 6, 2, 0, 6, 8, 1, 4, 6, 4, 7, 0, 9, 8, 1, 3, 1, 4, 3, 3, 5, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2019

Keywords

Comments

The asymptotic density of A337050. - Amiram Eldar, Aug 13 2020

Examples

			0.748535259682363564644215048637910601641640343005324404515852793925925...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(p^2 - p^3)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 110]], {t, 20, 200, 20}]
  • PARI
    prodeulerrat(1 - 1/p^2 + 1/p^3) \\ Amiram Eldar, Mar 17 2021

Formula

Equals (6/Pi^2) * A065487. - Amiram Eldar, Jun 10 2020

A336563 Sum of proper divisors of n that are divisible by every prime that divides n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 6, 0, 0, 0, 14, 0, 6, 0, 10, 0, 0, 0, 18, 5, 0, 12, 14, 0, 0, 0, 30, 0, 0, 0, 36, 0, 0, 0, 30, 0, 0, 0, 22, 15, 0, 0, 42, 7, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 30, 0, 0, 21, 62, 0, 0, 0, 34, 0, 0, 0, 96, 0, 0, 15, 38, 0, 0, 0, 70, 39, 0, 0, 42, 0, 0, 0, 66, 0, 30, 0, 46, 0, 0, 0, 90
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, May 06 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A336563(n) = (A057723(n)-n);
    \\ Or just as:
    A336563(n) = { my(x=A007947(n),y = n/x); (x*(sigma(y)-y)); };

Formula

a(n) = A057723(n) - n.
a(n) = A007947(n) * A336567(n) = A007947(n) * A001065(A003557(n)).
a(n) = A336564(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - 1 = 0.231291... . - Amiram Eldar, Dec 07 2023

A308135 Sum of non-coreful divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 10, 1, 10, 9, 1, 1, 15, 1, 12, 11, 14, 1, 18, 1, 16, 1, 14, 1, 42, 1, 1, 15, 20, 13, 19, 1, 22, 17, 20, 1, 54, 1, 18, 18, 26, 1, 34, 1, 33, 21, 20, 1, 42, 17, 22, 23, 32, 1, 78, 1, 34, 20, 1, 19, 78, 1, 24, 27, 74, 1, 27, 1, 40
Offset: 1

Views

Author

Amiram Eldar and Paolo P. Lava, May 14 2019

Keywords

Comments

Non-coreful divisor d of a number k is a divisor such that rad(d) != rad(k), where rad(k) is the largest squarefree divisor of k (A007947).

Examples

			a(15) = 9. Prime factors of 15 are 3, 5 and its divisors are 1, 3, 5, 15. The non-coreful divisors are 1, 3, 5 and their sum is 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(k) local a,n; a:=mul(n,n=factorset(k));
    sigma(k)-a*sigma(k/a); end: seq(P(i),i=1..74);
  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; a[1] = 0; a[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Array[a, 100]

Formula

a(n) = A000203(n) - A057723(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065487 = 0.413642... . - Amiram Eldar, Dec 08 2023
Previous Showing 11-20 of 45 results. Next