cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A277074 Number of n-node labeled graphs with three endpoints.

Original entry on oeis.org

0, 0, 0, 4, 80, 1860, 64680, 3666600, 354093264, 59372032440, 17572209206640, 9347625940951980, 9099961952914672840, 16480899322963497105684, 56311549004017312945310280, 367105988116570172056739960080
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=3 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := 1/6*z^4/(1-z)^3*XGF:
    K2 := 1/2*z^4/(1-z)^2*(diff(XGF,z)-XGF):
    K3 := 1/6*z^6/(1-z)^3*(diff(XGF, z$3)-3*diff(XGF, z$2)+3*diff(XGF,z)-XGF):
    K4 := 1/2*z^5/(1-z)^4*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
    K5 := 1/6*z^4/(1-z)^4*(diff(XGF,z)-XGF):
    K6 := 1/2*z^5/(1-z)^5*(diff(XGF,z)-XGF):
    XS := series(K1+K2+K3+K4+K5+K6, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m+1}];
    egf = (1/6)*(z^4/(1-z)^3)*A[z] + (1/2)*(z^4/(1-z)^2)*(A'[z] - A[z]) + (1/6)*(z^6/(1-z)^3)*(A'''[z] - 3*A''[z] + 3*A'[z] - A[z]) + (1/2)*(z^5/(1 - z)^4)*(A''[z] - 2*A'[z] + A[z]) + (1/6)*(z^4/(1-z)^4)*(A'[z] - A[z]) + (1/2)*(z^5/(1-z)^5)*(A'[z] - A[z]); s = egf + O[z]^(m+1);
    a[n_] := n!*SeriesCoefficient[s, n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (1/6)*(z^4/(1-z)^3)*A(z) + (1/2)*(z^4/(1-z)^2)*(A'(z)-A(z)) + (1/6)*(z^6/(1-z)^3)*(A'''(z)-3*A''(z)+3*A'(z)-A(z)) + (1/2)*(z^5/(1-z)^4)*(A''(z)-2*A'(z)+A(z)) + (1/6)*(z^4/(1-z)^4)*(A'(z)-A(z)) + (1/2)*(z^5/(1-z)^5)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0} 2^binomial(n, 2)*(z/exp(z))^n/n!.

A088974 Number of (nonisomorphic) connected bipartite graphs with minimum degree at least 2 and with n vertices.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 9, 45, 160, 1018, 6956, 67704, 830392, 13539344, 288643968, 8112651795, 300974046019, 14796399706863, 967194378235406, 84374194347669628, 9856131011755992817, 1546820212559671605395
Offset: 1

Views

Author

Felix Goldberg (felixg(AT)tx.technion.ac.il), Oct 30 2003

Keywords

Comments

The terms were computed using the program Nauty.
As shown in the Hardt et al. reference, this sequence (for n >= 3) also enumerates the connected point-determining bipartite graphs. - Justin M. Troyka, Nov 27 2013

Examples

			Consider n = 4.  There is one connected bipartite graph with minimum degree at least 2: the square graph.  Also there is one connected point-determining bipartite graph: the graph *--*--*--*. - _Justin M. Troyka_, Nov 27 2013
		

Crossrefs

Cf. A006024, A004110 (labeled and unlabeled point-determining graphs [the latter is also unlabeled graphs w/ min. degree >= 2]).
Cf. A059167 (labeled graphs w/ min. degree >= 2).
Cf. A092430, A004108 (labeled and unlabeled connected point-determining graphs [the latter is also unlabeled connected graphs w/ min. degree >= 2]).
Cf. A059166 (labeled connected graphs w/ min. degree >= 2).
Cf. A232699, A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf. A232700 (labeled connected point-determining bipartite graphs).

Extensions

More terms from Andy Hardt, Oct 31 2012

A100548 Number of n-node labeled digraphs without endpoints.

Original entry on oeis.org

1, 1, 1, 28, 2539, 847126, 987474781, 4267529230672, 71328353711113801, 4706871807383903992060, 1236666872833000506726110479, 1297665884376581511952494336126664, 5444003907104081585974782986977125743035, 91341304409373044577470623665964376840167100920
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 02 2005

Keywords

Crossrefs

Cf. A059167, A101388 (labeled case).

Programs

  • Magma
    m:=30;
    f:= func< x | Exp(3*x^2/2)*(&+[ 2^(n*(n-1))*(x*Exp(-3*x))^n/Factorial(n) : n in [0..m+2]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 27 2023
    
  • Mathematica
    m = 11;
    egf = Exp[3x^2/2]*Sum[2^(n(n-1))*(x/Exp[3 x])^n/n!, {n, 0, m}];
    a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
  • PARI
    seq(n)={my(g=x/exp(3*x + O(x*x^n))); Vec(serlaplace(exp(3*x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1))*g^k/k!)))} \\ Andrew Howroyd, Jan 08 2020
    
  • SageMath
    m = 30
    def f(x): return exp(3*x^2/2)*sum( 2^(n*(n-1))*(x*exp(-3*x))^n/factorial(n) for n in range(m+2) )
    def A100548_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A100548_list(m) # G. C. Greubel, Mar 27 2023

Formula

E.g.f.: exp(3/2*x^2)*(Sum_{n>=0} 2^(n*(n-1))*(x/exp(3*x))^n/n!).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 08 2020

A101388 Number of n-vertex unlabeled digraphs without endpoints.

Original entry on oeis.org

1, 1, 1, 8, 137, 7704, 1413982, 855543836, 1775124241697, 12985137979651848, 340909258684048264585, 32512676857544231506934756, 11365672344040389664750137465767, 14668676509227095069116619104786898732, 70315084528883620836175544247562749711989951
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 14 2005

Keywords

Crossrefs

Cf. A100548 (labeled case), A004110, A004108, A059166, A059167, A101389.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 22 2021

A369928 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled vertices with k edges and without endpoints, n >= 0, 0 <= k <= n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1, 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1, 1, 0, 0, 35, 105, 462, 2310, 9495, 32130, 85365, 166341, 231861, 237125, 184380, 111870, 53634, 20307, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0,  1;
[4] 1, 0, 0,  4,  3,  6,    1;
[5] 1, 0, 0, 10, 15,  42,  90,  100,   45,   10,    1;
[6] 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1;
		

Crossrefs

Row sums are A059167.
Cf. A084546, A123551 (unlabeled), A245796 (with endpoints).

Programs

  • PARI
    \\ row(n) gives n-th row as vector.
    row(n)={my(A=x/exp(x*y + O(x*x^n))); Vecrev(polcoef(serlaplace(exp(y*x^2/2 + O(x*x^n)) * sum(k=0, n, (1 + y)^binomial(k, 2)*A^k/k!)), n), 1 + binomial(n,2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = A084546(n,k) - A245796(n,k).
E.g.f.: exp(y*x^2/2) * Sum_{k>=0} (1 + y)^binomial(k, 2)*(x/exp(y*x))^k/k!.

A100569 Number of labeled n-node oriented graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 9, 337, 37889, 11410545, 9368733289, 21760617258977, 146872848650637249, 2927557787922534645793, 173801937725990883065857673, 30857177979379449393077427767217, 16413568090264759380752395628891885377, 26177914283033566658965502231213434987939601
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 02 2005

Keywords

Crossrefs

Cf. A059167.

Programs

  • Mathematica
    m = 14;
    egf = Exp[x^2]*Sum[3^(n (n - 1)/2)*(x/Exp[2 x])^n/n!, {n, 0, m}];
    a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
  • PARI
    seq(n)={my(A=x/exp(2*x+O(x^n))); Vec(serlaplace(exp(x^2 + O(x*x^n)) * sum(k=0, n, 3^binomial(k, 2)*A^k/k!)))} \\ Andrew Howroyd, Sep 09 2018

Formula

E.g.f.: exp(x^2)*(Sum_{n >= 0} 3^(n*(n-1)/2)*(x/exp(2*x))^n/n!).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 09 2018

A101389 Number of n-vertex unlabeled oriented graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 3, 21, 369, 16929, 1913682, 546626268, 406959998851, 808598348346150, 4358157210587930509, 64443771774627635711718, 2636248889492487709302815665, 300297332862557660078111708007894, 95764277032243987785712142452776403618, 85885545190811866954428990373255822969983915
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jan 14 2005

Keywords

Examples

			a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}
    ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}
    trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}
    cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
    
  • PARI
    \\ faster stand-alone version
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(9) and beyond from Andrew Howroyd, Dec 27 2020

A327379 Number of labeled non-mating-type graphs with n vertices.

Original entry on oeis.org

0, 1, 4, 32, 436, 11292, 545784, 49826744, 8647819328, 2876819527744, 1848998498567936, 2312324942899031040, 5659406410382924819712, 27230994319259100289485568, 258465217554621196991878652416, 4851552662579126853087143276476928
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A mating-type graph has all different rows in its adjacency matrix.

Crossrefs

The unlabeled version is A141580.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!UnsameQ@@AdjacencyMatrix[Graph[Range[n],#]]&]],{n,5}]
  • PARI
    a(n) = {2^binomial(n,2) - sum(k=0, n, stirling(n, k, 1)*2^binomial(k,2))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A006125(n) - A006024(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A101390 Number of n-vertex unlabeled mating graphs (cf. A006024) without endpoints.

Original entry on oeis.org

1, 0, 1, 2, 7, 41, 347, 5447, 158097, 8456025
Offset: 1

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 14 2005

Keywords

Crossrefs

Previous Showing 21-29 of 29 results.