A277074
Number of n-node labeled graphs with three endpoints.
Original entry on oeis.org
0, 0, 0, 4, 80, 1860, 64680, 3666600, 354093264, 59372032440, 17572209206640, 9347625940951980, 9099961952914672840, 16480899322963497105684, 56311549004017312945310280, 367105988116570172056739960080
Offset: 1
- F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).
-
MX := 16:
XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
K1 := 1/6*z^4/(1-z)^3*XGF:
K2 := 1/2*z^4/(1-z)^2*(diff(XGF,z)-XGF):
K3 := 1/6*z^6/(1-z)^3*(diff(XGF, z$3)-3*diff(XGF, z$2)+3*diff(XGF,z)-XGF):
K4 := 1/2*z^5/(1-z)^4*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
K5 := 1/6*z^4/(1-z)^4*(diff(XGF,z)-XGF):
K6 := 1/2*z^5/(1-z)^5*(diff(XGF,z)-XGF):
XS := series(K1+K2+K3+K4+K5+K6, z=0, MX+1):
seq(n!*coeff(XS, z, n), n=1..MX);
-
m = 16;
A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m+1}];
egf = (1/6)*(z^4/(1-z)^3)*A[z] + (1/2)*(z^4/(1-z)^2)*(A'[z] - A[z]) + (1/6)*(z^6/(1-z)^3)*(A'''[z] - 3*A''[z] + 3*A'[z] - A[z]) + (1/2)*(z^5/(1 - z)^4)*(A''[z] - 2*A'[z] + A[z]) + (1/6)*(z^4/(1-z)^4)*(A'[z] - A[z]) + (1/2)*(z^5/(1-z)^5)*(A'[z] - A[z]); s = egf + O[z]^(m+1);
a[n_] := n!*SeriesCoefficient[s, n];
Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
A088974
Number of (nonisomorphic) connected bipartite graphs with minimum degree at least 2 and with n vertices.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 9, 45, 160, 1018, 6956, 67704, 830392, 13539344, 288643968, 8112651795, 300974046019, 14796399706863, 967194378235406, 84374194347669628, 9856131011755992817, 1546820212559671605395
Offset: 1
Felix Goldberg (felixg(AT)tx.technion.ac.il), Oct 30 2003
Consider n = 4. There is one connected bipartite graph with minimum degree at least 2: the square graph. Also there is one connected point-determining bipartite graph: the graph *--*--*--*. - _Justin M. Troyka_, Nov 27 2013
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs [the latter is also unlabeled graphs w/ min. degree >= 2]).
Cf.
A059167 (labeled graphs w/ min. degree >= 2).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs [the latter is also unlabeled connected graphs w/ min. degree >= 2]).
Cf.
A059166 (labeled connected graphs w/ min. degree >= 2).
Cf.
A232699,
A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf.
A232700 (labeled connected point-determining bipartite graphs).
A100548
Number of n-node labeled digraphs without endpoints.
Original entry on oeis.org
1, 1, 1, 28, 2539, 847126, 987474781, 4267529230672, 71328353711113801, 4706871807383903992060, 1236666872833000506726110479, 1297665884376581511952494336126664, 5444003907104081585974782986977125743035, 91341304409373044577470623665964376840167100920
Offset: 0
-
m:=30;
f:= func< x | Exp(3*x^2/2)*(&+[ 2^(n*(n-1))*(x*Exp(-3*x))^n/Factorial(n) : n in [0..m+2]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 27 2023
-
m = 11;
egf = Exp[3x^2/2]*Sum[2^(n(n-1))*(x/Exp[3 x])^n/n!, {n, 0, m}];
a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
-
seq(n)={my(g=x/exp(3*x + O(x*x^n))); Vec(serlaplace(exp(3*x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1))*g^k/k!)))} \\ Andrew Howroyd, Jan 08 2020
-
m = 30
def f(x): return exp(3*x^2/2)*sum( 2^(n*(n-1))*(x*exp(-3*x))^n/factorial(n) for n in range(m+2) )
def A100548_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A100548_list(m) # G. C. Greubel, Mar 27 2023
A101388
Number of n-vertex unlabeled digraphs without endpoints.
Original entry on oeis.org
1, 1, 1, 8, 137, 7704, 1413982, 855543836, 1775124241697, 12985137979651848, 340909258684048264585, 32512676857544231506934756, 11365672344040389664750137465767, 14668676509227095069116619104786898732, 70315084528883620836175544247562749711989951
Offset: 0
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ Andrew Howroyd, Jan 22 2021
a(0)=1 prepended and terms a(7) and beyond from
Andrew Howroyd, Jan 22 2021
A369928
Triangle read by rows: T(n,k) is the number of simple graphs on n labeled vertices with k edges and without endpoints, n >= 0, 0 <= k <= n*(n-1)/2.
Original entry on oeis.org
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1, 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1, 1, 0, 0, 35, 105, 462, 2310, 9495, 32130, 85365, 166341, 231861, 237125, 184380, 111870, 53634, 20307, 5985, 1330, 210, 21, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0, 1;
[4] 1, 0, 0, 4, 3, 6, 1;
[5] 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1;
[6] 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1;
-
\\ row(n) gives n-th row as vector.
row(n)={my(A=x/exp(x*y + O(x*x^n))); Vecrev(polcoef(serlaplace(exp(y*x^2/2 + O(x*x^n)) * sum(k=0, n, (1 + y)^binomial(k, 2)*A^k/k!)), n), 1 + binomial(n,2))}
{ for(n=0, 6, print(row(n))) }
A100569
Number of labeled n-node oriented graphs without endpoints.
Original entry on oeis.org
1, 1, 1, 9, 337, 37889, 11410545, 9368733289, 21760617258977, 146872848650637249, 2927557787922534645793, 173801937725990883065857673, 30857177979379449393077427767217, 16413568090264759380752395628891885377, 26177914283033566658965502231213434987939601
Offset: 0
-
m = 14;
egf = Exp[x^2]*Sum[3^(n (n - 1)/2)*(x/Exp[2 x])^n/n!, {n, 0, m}];
a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
-
seq(n)={my(A=x/exp(2*x+O(x^n))); Vec(serlaplace(exp(x^2 + O(x*x^n)) * sum(k=0, n, 3^binomial(k, 2)*A^k/k!)))} \\ Andrew Howroyd, Sep 09 2018
A101389
Number of n-vertex unlabeled oriented graphs without endpoints.
Original entry on oeis.org
1, 1, 1, 3, 21, 369, 16929, 1913682, 546626268, 406959998851, 808598348346150, 4358157210587930509, 64443771774627635711718, 2636248889492487709302815665, 300297332862557660078111708007894, 95764277032243987785712142452776403618, 85885545190811866954428990373255822969983915
Offset: 0
a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.
-
\\ See links in A339645 for combinatorial species functions.
oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}
ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}
trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}
cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
-
\\ faster stand-alone version
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ Andrew Howroyd, Jan 22 2021
a(0)=1 prepended and terms a(9) and beyond from
Andrew Howroyd, Dec 27 2020
A327379
Number of labeled non-mating-type graphs with n vertices.
Original entry on oeis.org
0, 1, 4, 32, 436, 11292, 545784, 49826744, 8647819328, 2876819527744, 1848998498567936, 2312324942899031040, 5659406410382924819712, 27230994319259100289485568, 258465217554621196991878652416, 4851552662579126853087143276476928
Offset: 1
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!UnsameQ@@AdjacencyMatrix[Graph[Range[n],#]]&]],{n,5}]
-
a(n) = {2^binomial(n,2) - sum(k=0, n, stirling(n, k, 1)*2^binomial(k,2))} \\ Andrew Howroyd, Sep 11 2019
A101390
Number of n-vertex unlabeled mating graphs (cf. A006024) without endpoints.
Original entry on oeis.org
1, 0, 1, 2, 7, 41, 347, 5447, 158097, 8456025
Offset: 1
Comments