A136556
a(n) = binomial(2^n - 1, n).
Original entry on oeis.org
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
{a(n) = binomial(2^n-1,n)}
for(n=0, 20, print1(a(n), ", "))
-
/* As coefficient of x^n in the g.f.: */
{a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
-
[binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A319565
Number of non-isomorphic connected strict T_0 multiset partitions of weight n.
Original entry on oeis.org
1, 1, 1, 4, 8, 21, 62, 175, 553, 1775, 6007
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 8 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{2},{1,2}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{2},{1,2,2}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
A367769
Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0
The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
Set-systems without singletons are counted by
A016031, covering
A323816.
The version allowing singletons and empty edges is
A367901.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
Cf.
A007716,
A092918,
A102896,
A283877,
A306445,
A326031,
A355739,
A355740,
A355741,
A367904,
A367905.
-
Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]
A367770
Number of sets of nonempty non-singleton subsets of {1..n} satisfying a strict version of the axiom of choice.
Original entry on oeis.org
1, 1, 2, 15, 558, 81282, 39400122, 61313343278, 309674769204452
Offset: 0
The a(3) = 15 set-systems:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
Set-systems without singletons are counted by
A016031, covering
A323816.
The complement is counted by
A367769.
The complement allowing singletons and empty sets is
A367901.
Cf.
A059201,
A083323,
A092918,
A102896,
A283877,
A305000,
A306445,
A355739,
A355740,
A367904,
A367905.
-
Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,3}]
A059202
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
Offset: 0
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
Binary matrices with distinct rows and columns, various versions:
A059202,
A088309,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763
-
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d,`,(1/m!)*sum(stirling1(m+1,i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
-
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
A319560
Number of non-isomorphic strict T_0 multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 6, 15, 40, 121, 353, 1107, 3550, 11818
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1},{2}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{1},{2,2}}
{{2},{1,2}}
{{1},{2},{3}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,2,2}}
{{1},{2,3,3}}
{{2},{1,2,2}}
{{1,1},{2,2}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{3},{2,3}}
{{1},{2},{3},{4}}
A326946
Number of unlabeled T_0 set-systems on n vertices.
Original entry on oeis.org
1, 2, 5, 34, 1919, 18660178
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
{} {} {}
{{1}} {{1}}
{{1},{2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The version with empty edges allowed is
A326949.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]
A326961
Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.
Original entry on oeis.org
1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0
The a(3) = 36 set-systems:
{{1}{2}{3}} {{12}{13}{23}{123}} {{2}{3}{12}{13}{23}}
{{12}{13}{23}} {{1}{2}{3}{12}{13}} {{2}{3}{12}{13}{123}}
{{1}{2}{3}{12}} {{1}{2}{3}{12}{23}} {{2}{12}{13}{23}{123}}
{{1}{2}{3}{13}} {{1}{2}{3}{13}{23}} {{3}{12}{13}{23}{123}}
{{1}{2}{3}{23}} {{1}{2}{12}{13}{23}} {{1}{2}{3}{12}{13}{23}}
{{1}{2}{13}{23}} {{1}{2}{3}{12}{123}} {{1}{2}{3}{12}{13}{123}}
{{1}{2}{3}{123}} {{1}{2}{3}{13}{123}} {{1}{2}{3}{12}{23}{123}}
{{1}{3}{12}{23}} {{1}{2}{3}{23}{123}} {{1}{2}{3}{13}{23}{123}}
{{2}{3}{12}{13}} {{1}{3}{12}{13}{23}} {{1}{2}{12}{13}{23}{123}}
{{1}{12}{13}{23}} {{1}{2}{13}{23}{123}} {{1}{3}{12}{13}{23}{123}}
{{2}{12}{13}{23}} {{1}{3}{12}{23}{123}} {{2}{3}{12}{13}{23}{123}}
{{3}{12}{13}{23}} {{1}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}{123}}
Covering T_0 set-systems are
A059201.
The version with empty edges allowed is
A326960.
The non-covering version is
A326965.
Covering set-systems whose dual is a weak antichain are
A326970.
The BII-numbers of T_1 set-systems are
A326979.
-
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]
A326979
BII-numbers of T_1 set-systems.
Original entry on oeis.org
0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 30, 31, 42, 43, 45, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 75, 79, 91, 94, 95, 107, 109, 111, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 158, 159
Offset: 1
The sequence of all T_1 set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
15: {{1},{2},{1,2},{3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
42: {{2},{3},{2,3}}
43: {{1},{2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
51: {{1},{2},{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
BII-numbers of T_0 set-systems are
A326947.
BII-numbers of set-systems whose dual is a weak antichain are
A326966.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[dual[bpe/@bpe[#]],SubsetQ]&]
A003025
Number of n-node labeled acyclic digraphs with 1 out-point.
Original entry on oeis.org
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
\\ requires A058876.
my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
\\ see Marcel et al. link (formula for a').
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
Comments