cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A333467 Array read by antidiagonals: T(n,k) is the number of k-regular multigraphs on n labeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 5, 3, 1, 1, 0, 3, 0, 17, 0, 1, 1, 1, 3, 15, 47, 73, 15, 1, 1, 0, 4, 0, 138, 0, 388, 0, 1, 1, 1, 4, 34, 306, 2021, 4720, 2461, 105, 1, 1, 0, 5, 0, 670, 0, 43581, 0, 18155, 0, 1, 1, 1, 5, 65, 1270, 25050, 291001, 1295493, 1256395, 152531, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 23 2020

Keywords

Examples

			Array begins:
=============================================================
n\k | 0   1     2       3        4          5           6
----+--------------------------------------------------------
  0 | 1   1     1       1        1          1           1 ...
  1 | 1   0     1       0        1          0           1 ...
  2 | 1   1     2       2        3          3           4 ...
  3 | 1   0     5       0       15          0          34 ...
  4 | 1   3    17      47      138        306         670 ...
  5 | 1   0    73       0     2021          0       25050 ...
  6 | 1  15   388    4720    43581     291001     1594340 ...
  7 | 1   0  2461       0  1295493          0   159207201 ...
  8 | 1 105 18155 1256395 50752145 1296334697 23544232991 ...
  ...
		

Crossrefs

Rows n=0..3 are A000012, A059841, A008619, A006003.
Columns k=0..4 are A000012, A123023, A002135, A005814, A005816.
Cf. A059441 (graphs), A167625 (unlabeled nodes), A333351 (without loops).

Programs

  • Maple
    b:= proc(l, i) option remember; (n-> `if`(n=0, 1,
         `if`(l[n]=0, b(sort(subsop(n=[][], l)), n-1),
         `if`(i<1, 0, b(l, i-1)+`if`(i=n, `if`(l[n]>1,
          b(subsop(n=l[n]-2, l), i), 0), `if`(l[i]>0,
          b(subsop(i=l[i]-1, n=l[n]-1, l), i), 0))))))(nops(l))
        end:
    A:= (n, k)-> b([k$n], n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 23 2020
  • Mathematica
    b[l_, i_] := b[l, i] = Function[n, If[n == 0, 1, If[l[[n]] == 0, b[Sort[ ReplacePart[l, n -> Nothing]], n-1], If[i < 1, 0, b[l, i-1] + If[i == n, If[l[[n]] > 1, b[ReplacePart[l, n -> l[[n]]-2], i], 0], If[l[[i]] > 0, b[ReplacePart[l, {i -> l[[i]]-1, n -> l[[n]]-1}], i], 0]]]]]][Length[l]];
    A[n_, k_] := b[Table[k, {n}], n];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 07 2020, after Alois P. Heinz *)
  • PARI
    MultigraphsWLByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], forstep(e=0, limit, 2, recurse(n-r, limit, src[i, 1], 0, src[i, 2], e)))); Mat(M);
    }
    T(n, k)={if(n%2&&k%2, 0, vecsum(MultigraphsWLByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
    { for(n=0, 8, for(k=0, 6, print1(T(n, k), ", ")); print) }

A324163 Triangle read by rows: T(n,k) is the number of connected k-regular simple graphs on n labeled vertices, (0 <= k < n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 12, 0, 1, 0, 0, 60, 70, 15, 1, 0, 0, 360, 0, 465, 0, 1, 0, 0, 2520, 19320, 19355, 3507, 105, 1, 0, 0, 20160, 0, 1024380, 0, 30016, 0, 1, 0, 0, 181440, 11166120, 66462480, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 02 2019

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,     1;
  0, 0,     3,     1;
  0, 0,    12,     0,       1;
  0, 0,    60,    70,      15,    1;
  0, 0,   360,     0,     465,    0,     1;
  0, 0,  2520, 19320,   19355, 3507,   105, 1;
  0, 0, 20160,     0, 1024380,    0, 30016, 0, 1;
  ...
		

Crossrefs

Column k=2 is A001710(n-1) for n >= 3.
Column k=3 is aerated A004109.
Column k=4 is A272905.
Row sums are A322659.
Cf. A059441 (not necessarily connected), A068934 (unlabeled).

Formula

Column k is the logarithmic transform of column k of A059441.

A322659 Number of connected regular simple graphs on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

A graph is regular if all vertices have the same degree.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 23 2018
a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A322704 Number of regular hypergraphs on n labeled vertices with no singletons.

Original entry on oeis.org

1, 1, 2, 4, 80, 209944
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree.

Examples

			The a(3) = 4 edge-sets:
  {}
  {{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2^n-n-1}],{n,1,5}]

A339847 The number of labeled 6-regular graphs on n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 105, 30016, 11180820, 5188453830, 2977635137862, 2099132870973600, 1803595358964773088, 1872726690127181663775, 2329676580698022197516875, 3443086402825299720403673760, 5997229769947050271535917422040, 12218901113752712984458458475480428
Offset: 0

Views

Author

Atabey Kaygun, Dec 21 2020

Keywords

Crossrefs

Column k=6 of A059441.
Cf. A165627 (unlabeled case), A295193.

Programs

  • PARI
    \\ Needs GraphsByDegreeSeq from links in A295193.
    a(n)={my(M=GraphsByDegreeSeq(n, 6, (p,r)->6-valuation(p,x) <= r)); if(n>=7, vecsum(M[,2]), n==0)} \\ Andrew Howroyd, Dec 26 2020

Extensions

Terms a(14) and beyond from Andrew Howroyd, Dec 26 2020

A351263 Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes whose underlying graph is k-regular, k = 0..n-1.

Original entry on oeis.org

1, 1, 2, 1, 0, 8, 1, 12, 48, 64, 1, 0, 384, 0, 1024, 1, 120, 4480, 35840, 61440, 32768, 1, 0, 59520, 0, 7618560, 0, 2097152, 1, 1680, 897792, 79278080, 1268449280, 3677356032, 1761607680, 268435456, 1, 0, 15368192, 0, 268535070720, 0, 4028679323648, 0, 68719476736
Offset: 1

Views

Author

Andrew Howroyd, Feb 05 2022

Keywords

Comments

The sum of the in-degree and out-degree at each node is k.

Examples

			Triangle begins:
  1;
  1,   2;
  1,   0,     8;
  1,  12,    48,    64;
  1,   0,   384,     0,    1024;
  1, 120,  4480, 35840,   61440, 32768;
  1,   0, 59520,     0, 7618560,     0, 2097152;
  ...
		

Crossrefs

Row sums are A351264.
Main diagonal is A006125.
The unlabeled version is A350912.
Cf. A059441 (graphs).

Formula

T(n,k) = A059441(n,k)*2^(n*k/2). - Pontus von Brömssen, Apr 04 2022

A322705 Number of k-uniform k-regular hypergraphs spanning n vertices, for some 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 472, 23342
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 2 hypergraphs:
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 5 hypergraphs:
  {{1},{2},{3},{4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The a(5) = 26 hypergraphs:
  {{1},{2},{3},{4},{5}}
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,3},{3,4},{4,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,4},{2,4},{2,5},{3,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
  {{1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,4},{1,4,5},{2,3,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,3,4},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}}
  {{1,2,3},{1,3,4},{1,4,5},{2,3,5},{2,4,5}}
  {{1,2,3},{1,3,5},{1,4,5},{2,3,4},{2,4,5}}
  {{1,2,4},{1,2,5},{1,3,4},{2,3,5},{3,4,5}}
  {{1,2,4},{1,2,5},{1,3,5},{2,3,4},{3,4,5}}
  {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4,5}}
  {{1,2,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,4,5}}
  {{1,2,5},{1,3,4},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]

A333158 Irregular triangle read by rows: T(n,k) is the number of k-regular graphs on n labeled nodes with loops allowed, n >= 1, 0 <= k <= n + 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 8, 8, 3, 1, 1, 0, 38, 0, 38, 0, 1, 1, 15, 208, 730, 730, 208, 15, 1, 1, 0, 1348, 0, 20670, 0, 1348, 0, 1, 1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1, 1, 0, 86174, 0, 37885204, 0, 37885204, 0, 86174, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

A loop adds 2 to the degree of its vertex.

Examples

			Triangle begins:
  1,   0,     1;
  1,   1,     1,      1;
  1,   0,     2,      0,      1;
  1,   3,     8,      8,      3,      1;
  1,   0,    38,      0,     38,      0,      1;
  1,  15,   208,    730,    730,    208,     15,     1;
  1,   0,  1348,      0,  20670,      0,   1348,     0,   1;
  1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1;
  ...
		

Crossrefs

Row sums are A322635.
Columns k=0..4 are A000012, A123023, A108246, A110039 (with interspersed zeros), A228697.

Formula

T(n,k) = T(n, n+1-k).

A338978 Number of labeled 5-regular graphs on 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3507, 66462606, 2977635137862, 283097260184159421, 52469332407700365320163, 17647883828569858659972268092, 10148613081040117624319536901932188, 9494356410654311931931879706070629989407, 13859154719468565627065764000731047706917194485
Offset: 0

Views

Author

Atabey Kaygun, Dec 18 2020

Keywords

Crossrefs

With interspersed zeros, column k=5 of A059441.
Cf. A001205, A002829, A005815, A165626 (unlabeled case).

A322555 Number of labeled simple graphs on n vertices where all non-isolated vertices have the same degree.

Original entry on oeis.org

1, 1, 2, 5, 18, 69, 390, 2703, 59474, 1548349, 168926258, 12165065351, 7074423247562, 2294426405580191, 4218009215702391954, 3810376434461484994317, 35102248193591661086921250, 156873334244228518638713087133, 4144940994226400702145709978234154
Offset: 0

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

Such graphs may be said to have regular support.

Examples

			The a(4) = 18 edge sets:
  {}
  {{1,2}}
  {{1,3}}
  {{1,4}}
  {{2,3}}
  {{2,4}}
  {{3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],SameQ@@Length/@Split[Sort[Join@@#]]&]],{n,6}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n, k)*(A295193(k) - 1). - Andrew Howroyd, Dec 17 2018

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 17 2018
a(16)-a(18) from Andrew Howroyd, May 21 2020
Previous Showing 11-20 of 23 results. Next