cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A110024 Smallest primes starting a complete three iterations Cunningham chain of the second kind.

Original entry on oeis.org

2131, 2311, 6211, 7411, 10321, 18121, 22531, 23011, 24391, 29671, 31771, 35311, 41491, 46411, 54601, 56311, 60331, 61381, 67651, 78031, 85381, 96931, 99871, 109471, 126001, 134731, 156691, 162451, 165331, 170851, 185131, 205171, 224401
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The word "complete" indicates each chain is exactly 4 primes long (i.e., the chain cannot be a subchain of another one). Other sequences give also primes included in longer chains ("starting" them or not).
Terms computed by Gilles Sadowski.

Examples

			2311 is here because, through the operator <*2-1> of the chains of the second kind,
2311 -> 4621 -> 9241 -> 18481 and the chain ends here (with this operator).
		

Crossrefs

Extensions

Edited and extended by R. J. Mathar, May 08 2009

A109835 Primes connected to two primes by the (p+1)/2 and 2p-1 operators.

Original entry on oeis.org

3, 37, 157, 661, 877, 997, 1237, 1657, 2137, 2557, 3061, 4177, 4261, 4357, 4621, 5581, 6037, 6121, 6217, 6361, 7537, 8317, 8461, 8521, 9241, 9277, 9721, 9901, 10837, 11497, 12241, 12421, 13417, 13681, 14737, 14821, 15121, 15277, 16417, 17257
Offset: 1

Views

Author

Alexandre Wajnberg, Aug 31 2005

Keywords

Comments

Primes involved in Cunningham chains of the second kind (2p-1) and not starting or ending them. A059455 is produced by the same rule, but "of the first kind (2p+1)".

Examples

			a(2)=37 is here because (37 + 1)/2 = 19 and 2*37 - 1 = 73 are both primes;
a(11)=3061 because 1531 -> 3061 -> 6121 through <2p-1> and all are primes;
a(11)=3061, a(18)=6121 and a(31)=12241 are here because they are inside the complete Cunningham chain of the second kind 1531 -> 3061 -> 6121 -> 12241 -> 24481.
		

Crossrefs

Programs

A109998 Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2.

Original entry on oeis.org

17, 43, 67, 71, 101, 103, 109, 127, 137, 149, 151, 163, 181, 197, 223, 241, 257, 269, 283, 311, 317, 349, 353, 373, 389, 401, 409, 433, 449, 461, 463, 487, 521, 523, 557, 569, 571, 599, 617, 631, 643, 647, 677, 701, 709, 739, 751, 769, 773, 787, 797, 821
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 01 2005

Keywords

Comments

The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - Washington Bomfim, Oct 30 2009

Examples

			a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers.
		

Crossrefs

Programs

  • Mathematica
    nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* Vladimir Joseph Stephan Orlovsky, Mar 22 2009 *)

Extensions

Corrected and extended by Ray Chandler, Sep 02 2005
Replaced link to cached arXiv URL with link to the abstract - R. J. Mathar, Mar 01 2010

A152292 Primes p of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=2.

Original entry on oeis.org

17, 23, 59, 89, 239, 269, 293, 383, 419, 503, 953, 1013, 1193, 1259, 1823, 1979, 2129, 2633, 2789, 3209, 3389, 4229, 5099, 5333, 6089, 6299, 6803, 7019, 7673, 7853, 8123, 8513, 8753, 8819, 9059, 9203, 10169, 10223, 10589, 10853, 10979, 11159, 12689
Offset: 1

Views

Author

Keywords

Comments

This is the general form : (p-n)/(n+1)=prime and (n+1)*p+n=prime; 'Safe' primes and 'Sophie Germain' primes just one part of this general form; If n=1 then we got 'Safe' primes and 'Sophie Germain' primes.

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [5..2*10^3] | IsPrime(NthPrime(n) div 3) and IsPrime(3*NthPrime(n)+2)]; // Vincenzo Librandi, Mar 08 2018
  • Maple
    Res:= NULL: count:= 0:
    q:= 1:
    while count < 100 do
    q:= nextprime(q);
    if isprime(3*q+2) and isprime(9*q+8)
        then Res:= Res, 3*q+2; count:= count+1
      fi
    od:
    Res; # Robert Israel, Mar 07 2018
  • Mathematica
    lst={};n=2;Do[p=Prime[k];If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n],AppendTo[lst,p]],{k,7!}];lst
  • PARI
    lista(nn) = forprime(p=17, nn, if(isprime(3*p+2) && isprime(p\3), print1(p", "))); \\ Altug Alkan, Mar 07 2018
    

A156877 Number of primes <= n that are safe primes and also Sophie Germain primes.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 18 2009

Keywords

Examples

			a(120) = #{5, 11, 23, 83} = 4.
		

Crossrefs

Formula

a(n) = A156874(n) + A156875(n) - A156876(n).
a(n) = Sum_{k=1..n} A156659(k)*A156660(k).

A110022 Primes starting a Cunningham chain of the second kind of length 5.

Original entry on oeis.org

1531, 6841, 15391, 44371, 57991, 83431, 105871, 145021, 150151, 199621, 209431, 212851, 231241, 242551, 291271, 319681, 346141, 377491, 381631, 451411, 481021, 506791, 507781, 512821, 537811, 588871, 680431, 727561, 749761, 782911, 787711
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The definition indicates that each chain is exactly 5 primes long (i.e. the chain cannot be a subchain of a longer one). That's why this sequence is different from A057328 which gives also primes included in longer chains (thus not "starting" them), as 16651, starting a seven primes chain, or 33301, second prime of the same seven primes chain.

Examples

			6841 is here because: 6841 through <2p-1> -> 13681-> 27361-> 54721-> 109441 and the chain ends here since 2*109441-1=13*113*149 is composite.
		

Crossrefs

Programs

  • Maple
    isA110022 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p+1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 4 do pitr := 2*pitr-1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr-1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 200000 do p := ithprime(i) ; if isA110022(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008

Extensions

Edited and extended by R. J. Mathar, Jul 23 2008

A110056 Least prime that ends a complete Cunningham chain (of the first kind) of length n.

Original entry on oeis.org

13, 7, 167, 4079, 47, 2879, 71850239, 2444789759, 21981381119, 13357981992959, 681004115066879, 1136001594224639, 16756459239477534719, 781558105952602767359
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

"Complete" means that this chain is not part of a longer Cunningham chain of the first kind.
Next term is greater than 4*10^17.
A005602(13)-> 8181864863026139 -> ... -> a(13) = 16756459239477534719. [From Washington Bomfim, Oct 21 2009]

Examples

			41->83->167 is a Cunningham chain of the first kind. It is complete because neither (41-1)/2 nor 2*167+1 is prime. It is the first such chain of three primes, so a(3) = 167.
		

Crossrefs

Cf. A110059 for Cunningham chains of the second kind.
Cf. A005602 [From Washington Bomfim, Oct 21 2009]

Extensions

Edited and extended by David Wasserman, Aug 08 2006
a(13) and a(14) from Washington Bomfim, Oct 21 2009

A152293 Primes of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=3.

Original entry on oeis.org

11, 31, 47, 151, 271, 359, 439, 599, 719, 1031, 1759, 1871, 2287, 2711, 2767, 2879, 3719, 3911, 4079, 5119, 5527, 5791, 6199, 6271, 6991, 7151, 7607, 7727, 8447, 8647, 8831, 9151, 9391, 9511, 9839, 10159, 10687, 10847, 11279, 12479, 12919, 13487
Offset: 1

Views

Author

Keywords

Comments

This is the general form : (p-n)/(n+1)=primeand(n+1)*p+n=prime; 'Safe' primes and'Sophie Germain' primes just one part of this general form; If n=1 then we got'Safe' primes and'Sophie Germain' primes.

Crossrefs

Programs

  • Mathematica
    lst={};n=3;Do[p=Prime[k];If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n],AppendTo[lst,p]],{k,7!}];lst
    Select[Prime[Range[1600]],AllTrue[{(#-3)/4,4#+3},PrimeQ]&] (* Harvey P. Dale, Aug 24 2025 *)

A109927 First primes p connected to two primes either by 2p+1 or 2p-1 upward [downward (p-1)/2 or (p+1)/2].

Original entry on oeis.org

3, 5, 11, 23, 37, 83, 157, 179, 359, 661, 719, 877, 997, 1019, 1237, 1439, 1657, 2039, 2063, 2137, 2459, 2557, 2819, 2903, 2963, 3023, 3061, 3623, 3779, 3803, 3863, 4177, 4261, 4357, 4621, 4919, 5399, 5581, 5639, 6037, 6121, 6217, 6361, 6899, 6983, 7079
Offset: 1

Views

Author

Alexandre Wajnberg, Aug 31 2005

Keywords

Comments

These primes may be part of Cunningham chains longer than three terms. It seems the two operators are never mixed, except for 3, 5 and 7: -for 3, we have: 2 through <2p-1> -> 3 through <2p+1> -> 7 -for 5: 3 <2p-1> -> 5 <2p+1> -> 11 -for 7: 3 <2p+1> -> 7 <2p-1> -> 13
For p > 7, such a mixed chain with p in the middle is impossible because the number 3 would be a nontrivial factor of either the smallest or the largest term. - Jeppe Stig Nielsen, May 05 2019
Primes (excluding 2 and 7) that divide more than one semiprime triangular number A068443. - Jeppe Stig Nielsen, May 05 2019
The disjoint union of A059455 and A109835. - Jeppe Stig Nielsen, May 05 2019

Examples

			a(3)=11 is here because 5->11->23 through <2p+1>;
a(4)=23 because 11->23->47 through <2p+1>;
a(5)=37 because 19->37->73 through <2p-1>.
		

Crossrefs

Programs

  • PARI
    forprime(p=3,10^6,if(p%3==2,isprime((p-1)/2)&&isprime(2*p+1),isprime((p+1)/2)&&isprime(2*p-1))&&print1(p,", ")) \\ Jeppe Stig Nielsen, May 05 2019

A110025 Smallest primes starting a complete three iterations Cunningham chain of the first or second kind.

Original entry on oeis.org

509, 1229, 1409, 2131, 2311, 2699, 3539, 6211, 6449, 7411, 10321, 10589, 11549, 11909, 12119, 17159, 18121, 19709, 19889, 22349, 22531, 23011, 24391, 26189, 27479, 29671, 30389, 31771, 35311, 41491, 43649, 46411, 54601, 55229, 56311
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

Terms computed by Gilles Sadowski.

Examples

			1409 is here because, through the operator <2p+1> for chains of the first kind, 1409 -> 2819 -> 5639 -> 11279 and the chain ends here.
2131 is here because, through the operator <2p-1> for chains of the second kind, 2131 -> 4261 -> 8521 -> 17041 and the chain ends here.
		

Crossrefs

Formula

Union of A059763 and A110024. [R. J. Mathar, May 08 2009]

Extensions

Edited by R. J. Mathar, May 08 2009
Previous Showing 11-20 of 36 results. Next