cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A057220 Numbers k such that 2^k - 23 is prime.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 18, 36, 68, 152, 212, 324, 1434, 1592, 1668, 3338, 7908, 9662, 27968, 28116, 33974, 41774, 66804, 144518, 162954, 241032, 366218, 676592, 991968
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

Note that for the values 2 and 4 the primes are negative.
a(22) > 41358. - Jinyuan Wang, Jan 20 2020
All terms are even. - Elmo R. Oliveira, Nov 24 2023

Examples

			k = 6: 2^6 - 23 = 41 is prime.
k = 8: 2^8 - 23 = 233 is prime.
		

Crossrefs

Cf. A096502.
Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), this sequence (d=23), A356826 (d=29).

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - 23 ], Print[ n ] ], { n, 1, 15000} ]
  • PARI
    is(n)=ispseudoprime(2^n-23) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(19)-a(21) from Jinyuan Wang, Jan 20 2020
a(22)-a(23) found by Henri Lifchitz, a(24)-a(27) found by Lelio R Paula, a(28)-a(29) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 24 2023

A356826 Numbers k such that 2^k - 29 is prime.

Original entry on oeis.org

5, 8, 104, 212, 79316, 102272, 225536, 340688
Offset: 1

Views

Author

Craig J. Beisel, Aug 29 2022

Keywords

Comments

A particularly low-density pseudo-Mersenne sequence. I have verified that there are no additional terms for k < 5*10^4. For k = a(5), a(6), a(7), and a(8), 2^k - 29 is a probable prime (see link).
The terms a(5)-a(8) were discovered by Henri Lifchitz (see link). - Elmo R. Oliveira, Nov 29 2023
Empirically: except for 5, all terms are even. - Elmo R. Oliveira, Nov 29 2023

Examples

			5 is a term because 2^5 - 29 = 3 is prime.
8 is a term because 2^8 - 29 = 227 is prime.
		

Crossrefs

Cf. A096502.
Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), this sequence (d=29).

Programs

  • PARI
    for(n=2, 1000, if(isprime(2^n-29), print1(n, ", ")))

A238797 Smallest k such that 2^k - (2*n+1) and (2*n+1)*2^k - 1 are both prime, k <= 2*n+1, or 0 if no such k exists.

Original entry on oeis.org

0, 3, 4, 0, 0, 0, 0, 5, 6, 5, 7, 6, 9, 5, 0, 7, 6, 6, 0, 0, 10, 0, 6, 0, 7, 9, 6, 7, 8, 0, 17, 8, 0, 0, 7, 0, 0, 18, 0, 0, 0, 8, 0, 10, 8, 9, 18, 0, 0, 7, 0, 0, 8, 12, 0, 7, 0, 11, 16, 0, 21, 0, 0, 0, 8, 14, 0, 0, 18, 9, 10, 8, 77, 0, 0, 0, 12, 8, 0, 11, 18, 0
Offset: 0

Views

Author

Keywords

Comments

Numbers n such that 2^k - (2*n+1) and (2*n+1)*2^k - 1 are both prime:
For k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...

Examples

			a(1) = 3 because 2^3 - (2*1+1) = 5 and (2*1+1)*2^3 - 1 = 23 are both prime, 3 = 2*1+1,
a(2) = 4 because 2^4 - (2*2+1) = 11 and (2*2+1)*2^4 - 1 = 79 are both prime, 4 < 2*2+1 = 5.
		

Crossrefs

Cf. A238748, A238904 (smallest k such that 2^k + (2n+1) and (2n+1)*2^k + 1 are both prime, k <= n, or -1 if no such k exists).

Programs

  • Mathematica
    a[n_] := Catch@ Block[{k = 1}, While[k <= 2*n+1, If[2^k - (2*n + 1) > 0 && PrimeQ[2^k - (2*n+1)] && PrimeQ[(2*n + 1)*2^k-1], Throw@k]; k++]; 0]; a/@ Range[0, 80] (* Giovanni Resta, Mar 15 2014 *)

Extensions

a(0), a(19), a(20) corrected by Giovanni Resta, Mar 13 2014

A181705 Numbers of the form 2^(t-1)*(2^t-9), where 2^t-9 is prime.

Original entry on oeis.org

56, 368, 128768, 2087936, 8589344768, 2199013818368, 36893488108764397568, 904625697166532776746648320380374279912262923807289020860114158381451706368
Offset: 1

Views

Author

Vladimir Shevelev, Nov 06 2010

Keywords

Comments

Subsequence of A181595.
(Proof: Let m=2^(t-1)*(2^t-9) be the entry. By the multiplicative property of the sigma-function, sigma(m)=(2^t-1)*(2^t-8).
The abundance sigma(m)-2*m is therefore 8, and since all t involved are >=4, 8 is a divisor of m because 8 divides 2^(t-1).)

Crossrefs

Programs

  • Mathematica
    2^(#-1) (2^#-9)&/@Select[Range[3,130],PrimeQ[2^#-9]&] (* Harvey P. Dale, Oct 24 2011 *)

Extensions

Edited by R. J. Mathar, Sep 12 2011

A217383 Numbers k such that 8^k - 9 is prime.

Original entry on oeis.org

3, 7, 11, 47, 81, 95, 107, 179, 233, 243, 947, 2817, 2859, 3233, 7563, 11307, 218615, 225587, 1160027
Offset: 1

Views

Author

Vincenzo Librandi, Oct 03 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A059610.
Naturally these numbers are odd since 8^(2n)-9 = (8^n-3)(8^n+3) is composite. - Bruno Berselli, Oct 04 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[8^# - 9] &]
  • PARI
    is(n)=ispseudoprime(8^n-9) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(17)-a(18) using A059610 from Michael S. Branicky, Jul 14 2023
a(19) using A059610 from Michael S. Branicky, Apr 23 2025

A238749 Exponents of third Mersenne prime pair: numbers n such that 2^n - 5 and 5*2^n - 1 are both prime.

Original entry on oeis.org

4, 8, 10, 12, 18, 32
Offset: 1

Views

Author

Keywords

Comments

a(7) > 350028.
Intersection of A059608 and A001770.
Exponents of Mersenne prime pairs {2^n - (2k + 1), (2k + 1)*2^n - 1}:
for k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...
for k = 14:

Examples

			a(1) = 4 because 2^4 - 5 = 11 and 5*2^4 - 1 = 79 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(2^n-5) and IsPrime(5*2^n-1)]; // Vincenzo Librandi, May 17 2015
  • Mathematica
    fQ[n_] := PrimeQ[2^n - 5] && PrimeQ[5*2^n - 1]; k = 1; While[ k < 15001, If[fQ@ k, Print@ k]; k++] (* Robert G. Wilson v, Mar 05 2014 *)
    Select[Range[1000], PrimeQ[2^# - 5] && PrimeQ[5 2^# - 1] &] (* Vincenzo Librandi, May 17 2015 *)
  • PARI
    isok(n) = isprime(2^n - 5) && isprime(5*2^n - 1); \\ Michel Marcus, Mar 04 2014
    

A379020 Numbers k such that 2^k - 25 is prime.

Original entry on oeis.org

5, 7, 9, 13, 33, 37, 57, 63, 93, 127, 129, 165, 189, 369, 717, 3079, 3087, 3925, 6709, 7633, 18001, 21961, 55557, 60415, 63589, 69463, 75949, 98265, 212295, 416773, 647545, 824325, 1538959, 2020893, 2421175
Offset: 1

Views

Author

Boyan Hu, Dec 13 2024

Keywords

Comments

Except for a(1), all terms are congruent to 1 or 3 mod 6.
a(36) > 3400000. - Boyan Hu, Jun 16 2025

Examples

			7 is in the sequence because 2^7-25=103 is prime.
8 is not in the sequence because 2^8-25=231=3*7*11 is not prime.
		

Crossrefs

Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
Except for a(1), subsequence of A047241.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - 25 ], Print[ n ] ], { n, 1, 15000} ]
  • PARI
    is(n)=ispseudoprime(2^n-25)

Extensions

a(1)=5 inserted by Max Alekseyev, May 28 2025

A192542 Numbers n such that the interval [2^n-n, 2^n] is prime-free.

Original entry on oeis.org

15, 25, 27, 28, 30, 34, 38, 40, 43, 45, 47, 48, 49, 51, 53, 55, 60, 71, 72, 75, 88, 97, 99, 106, 113, 117, 126, 128, 132, 139, 145, 146, 148, 151, 154, 168, 169, 175, 176, 177, 185, 186, 192, 208, 216, 223, 227, 232, 240, 253, 259
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 03 2011

Keywords

Comments

Places n where A192064(n)=0.
The numbers not in the sequence are characterized in A000043, A050414, A059608, A059610, etc.

Crossrefs

Cf. A192064.

Programs

Extensions

Corrected (a(16)=55 inserted) by Harvey P. Dale, Apr 08 2013

A282669 Prime numbers p > 3 such that 2^p - 9 is prime.

Original entry on oeis.org

5, 11, 17, 251, 563, 21011
Offset: 1

Views

Author

Dmitry Ezhov, Mar 07 2017

Keywords

Comments

Let W = 2^p - 9 and s = (W+7)/(2*p), then 3^s == 4 (mod W) for terms 1..6.
a(7) > 3480081 using A059610. - Michael S. Branicky, Jan 27 2025

Crossrefs

Prime terms of A059610.

Programs

  • Mathematica
    Select[Prime[Range[3,565]],PrimeQ[2^#-9]&] (* The program generates the first five terms of the sequence. *) (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    forprime(p=5, 10^5, W= 2^p-9; if(ispseudoprime(W), print1(p, ", ")))
Previous Showing 11-19 of 19 results.