cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 83 results. Next

A234000 Numbers of the form 4^i*(8*j+1).

Original entry on oeis.org

1, 4, 9, 16, 17, 25, 33, 36, 41, 49, 57, 64, 65, 68, 73, 81, 89, 97, 100, 105, 113, 121, 129, 132, 137, 144, 145, 153, 161, 164, 169, 177, 185, 193, 196, 201, 209, 217, 225, 228, 233, 241, 249, 256, 257, 260, 265, 272, 273, 281, 289, 292, 297, 305, 313, 321, 324, 329, 337, 345
Offset: 1

Views

Author

V. Raman, Dec 18 2013

Keywords

Comments

Squares modulo all powers of 2. - Robert Israel, Aug 26 2014
From Peter Munn, Dec 11 2019: (Start)
Closed under multiplication.
Contains all even powers of primes.
A subgroup of the positive integers under the binary operation A059897(.,.). For all n, a(n) has no Fermi-Dirac factor of 2 and if m_k denotes the number of Fermi-Dirac factors of a(n) that are congruent to k modulo 8, m_3, m_5 and m_7 have the same parity. It can further be shown (1) all numbers that meet these requirements are in the sequence and (2) this implies closure under A059897(.,.).
(End)

Crossrefs

Cf. A055046 (Numbers of the form 4^i*(8*j+3)).
Cf. A055045 (Numbers of the form 4^i*(8*j+5)).
Cf. A004215 (Numbers of the form 4^i*(8*j+7)).

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    {seq(seq(4^i*(8*k+1), k = 0 .. floor((N * 4^(-i)-1)/8)),i=0..floor(log[4](N)))}; # Robert Israel, Aug 26 2014
  • PARI
    is_A234000(n)=(n/4^valuation(n, 4))%8==1 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013; minor improvement by M. F. Hasler, Jan 02 2014
    
  • PARI
    list(lim)=my(v=List(),t); for(e=0,logint(lim\1,4), t=4^e; forstep(k=t, lim, 8*t, listput(v,k))); Set(v) \\ Charles R Greathouse IV, Jan 12 2017
    
  • Python
    from itertools import count, islice
    def A234000_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==1,count(max(startvalue,1)))
    A234000_list = list(islice(A234000_gen(),30)) # Chai Wah Wu, Jul 09 2022
    
  • Python
    def A234000(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>(i<<1))-1>>3)+1 for i in range((x.bit_length()>>1)+1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = 6n + O(log n). - Charles R Greathouse IV, Dec 19 2013
a(n) = A055044(n)/2. - Chai Wah Wu, Mar 19 2025

A234840 Self-inverse and multiplicative permutation of integers: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2, a(p_i) = p_{a(i+1)-1} for primes with index i > 2, and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

0, 1, 3, 2, 9, 19, 6, 61, 27, 4, 57, 11, 18, 281, 183, 38, 81, 101, 12, 5, 171, 122, 33, 263, 54, 361, 843, 8, 549, 29, 114, 59, 243, 22, 303, 1159, 36, 1811, 15, 562, 513, 1091, 366, 157, 99, 76, 789, 409, 162, 3721, 1083, 202, 2529, 541, 24, 209, 1647, 10, 87, 31
Offset: 0

Views

Author

Antti Karttunen, Dec 31 2013

Keywords

Comments

The permutation satisfies A008578(a(n)) = a(A008578(n)) for all n, and is self-inverse.
The sequence of fixed points begins as 0, 1, 6, 11, 29, 36, 66, 95, 107, 121, 149, 174, 216, 313, 319, 396, 427, ... and is itself multiplicative in a sense that if a and b are fixed points, then also a*b is a fixed point.
The records are 0, 1, 3, 9, 19, 61, 281, 361, 843, 1159, 1811, 3721, 5339, 5433, 17141, 78961, 110471, 236883, 325679, ...
and they occur at positions 0, 1, 2, 4, 5, 7, 13, 25, 26, 35, 37, 49, 65, 74, 91, 169, 259, 338, 455, ...
(Note how the permutations map squares to squares, and in general keep the prime signature the same.)
Composition with similarly constructed A235199 gives the permutations A234743 & A234744 with more open cycle-structure.
The result of applying a permutation of the prime numbers to the prime factors of n. - Peter Munn, Dec 15 2019

Examples

			a(4) = a(2 * 2) = a(2)*a(2) = 3*3 = 9.
a(5) = a(p_3) = p_{a(3+1)-1} = p_{9-1} = p_8 = 19.
a(11) = a(p_5) = p_{a(5+1)-1} = p_{a(6)-1} = p_5 = 11.
		

Crossrefs

List below gives similarly constructed permutations, which all force a swap of two small numbers, with (the rest of) primes permuted with the sequence itself and the new positions of composite numbers defined by the multiplicative property. Apart from the first one, all satisfy A000040(a(n)) = a(A000040(n)) except for a finite number of cases (with A235200, substitute A065091 for A000040):
A235200 (swaps 3 & 5).
A235199 (swaps 5 & 7).
A235201 (swaps 3 & 4).
A235487 (swaps 7 & 8).
A235489 (swaps 8 & 9).
Properties preserved by the sequence as a function: A000005, A001221, A001222, A051903, A101296.
A007913, A007947, A008578, A019554, A055231, A059895, A059896, A059897 are used to express relationships between terms of this sequence.

Programs

  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 1, 2, 3, 3, 2, _, Product[{p, e} = pe; Prime[a[PrimePi[p] + 1] - 1]^e, {pe, FactorInteger[n]}]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2021 *)
  • PARI
    A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ Antti Karttunen, Aug 23 2018

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2, a(p_i) = p_{a(i+1)-1} for primes with index i > 2, and a(u * v) = a(u) * a(v) for u, v > 0.
From Peter Munn, Dec 14 2019. These identities would hold also if a(n) applied any other permutation of the prime numbers to the prime factors of n: (Start)
A000005(a(n)) = A000005(n).
A001221(a(n)) = A001221(n).
A001222(a(n)) = A001222(n).
A051903(a(n)) = A051903(n).
A101296(a(n)) = A101296(n).
a(A007913(n)) = A007913(a(n)).
a(A007947(n)) = A007947(a(n)).
a(A019554(n)) = A019554(a(n)).
a(A055231(n)) = A055231(a(n)).
a(A059895(n,k)) = A059895(a(n), a(k)).
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A059897(n,k)) = A059897(a(n), a(k)).
(End)

A300841 Fermi-Dirac factorization prime shift towards larger terms: a(n) = A052330(2*A052331(n)).

Original entry on oeis.org

1, 3, 4, 5, 7, 12, 9, 15, 11, 21, 13, 20, 16, 27, 28, 17, 19, 33, 23, 35, 36, 39, 25, 60, 29, 48, 44, 45, 31, 84, 37, 51, 52, 57, 63, 55, 41, 69, 64, 105, 43, 108, 47, 65, 77, 75, 49, 68, 53, 87, 76, 80, 59, 132, 91, 135, 92, 93, 61, 140, 67, 111, 99, 85, 112, 156, 71, 95, 100, 189, 73, 165, 79, 123, 116, 115, 117, 192, 81
Offset: 1

Views

Author

Antti Karttunen, Apr 12 2018

Keywords

Comments

With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = A050376(1+i) * A050376(1+j) * ... * A050376(1+k).
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018

Examples

			For n = 6 = A050376(1)*A050376(2), a(6) = A050376(2)*A050376(3) = 3*4 = 12.
For n = 12 = A050376(2)*A050376(3), a(12) = A050376(3)*A050376(4) = 4*5 = 20.
		

Crossrefs

Cf. A050376, A052330, A052331, A059897, A300840 (a left inverse).
Cf. also A003961.
Range of values is A003159.

Programs

  • Mathematica
    fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];
    nextFDPrime[n_] := Module[{k = n + 1}, While[! fdPrimeQ[k], k++]; k];
    fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];
    a[n_] := Times @@ nextFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300841(n) = A052330(2*A052331(n));

Formula

a(n) = A052330(2*A052331(n)).
For all n >= 1, a(A050376(n)) = A050376(1+n).
For all n >= 1, A300840(a(n)) = n.
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 23 2019

A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

For any m > 0:
- let F(m) be the set of distinct Fermi-Dirac primes (A050376) with product m,
- for any i >=0 0 and j >= 0, let f(prime(i+1)^(2^i)) be the lattice point with coordinates X=i and Y=j (where prime(k) denotes the k-th prime number),
- f establishes a bijection from the Fermi-Dirac primes to the lattice points with nonnegative coordinates,
- let P(m) = { f(p) | p in F(m) },
- P establishes a bijection from the nonnegative integers to the set, say L, of finite sets of lattice points with nonnegative coordinates,
- let Q be the inverse of P,
- for any n > 0 and k > 0:
T(n, k) = Q(P(n) + P(k))
where "+" denotes the Minkowski addition on L.
This sequence has similarities with A297845, and their data sections almost match; T(6, 6) = 30, however A297845(6, 6) = 90.
This sequence has similarities with A067138; here we work on dimension 2, there in dimension 1.
This sequence as a binary operation distributes over A059896, whereas A297845 distributes over multiplication (A003991) and A329329 distributes over A059897. See the comment in A329329 for further description of the relationship between these sequences. - Peter Munn, Dec 19 2019

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   30   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343   128   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441   110   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573   720
		

Crossrefs

Columns (some differing for term 1) and equivalently rows: A003961(3), A000290(4), A045966(5), A045968(7), A045970(11).
Related binary operations: A067138, A059896, A297845/A003991, A329329/A059897.

Programs

  • PARI
    \\ See Links section.

Formula

For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(A019565(i), A019565(j)) = A019565(A067138(i, j)),
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A064547(T(n, k)) <= A064547(n) * A064547(k).
From Peter Munn, Dec 05 2019:(Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
T(A059896(i,j), k) = A059896(T(i,k), T(j,k)) (T distributes over A059896).
T(A019565(i), 2^j) = A019565(i)^j.
T(A225546(i), A225546(j)) = A225546(T(i,j)).
(End)

A064179 Infinitary version of Moebius function: infinitary MoebiusMu of n, equal to mu(n) iff mu(n) differs from zero, else 1 or -1 depending on whether the sum of the binary digits of the exponents in the prime decomposition of n is even or odd.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1
Offset: 1

Views

Author

Wouter Meeussen, Sep 20 2001

Keywords

Comments

Apparently the (ordinary) Dirichlet inverse of A050377. - R. J. Mathar, Jul 15 2010
Also analog of Liouville's function (A008836) in Fermi-Dirac arithmetic, where the terms of A050376 play the role of primes (see examples). - Vladimir Shevelev, Oct 28 2013.

Examples

			G.f. = x - x^2 - x^3 - x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...
mu[45]=0 but iMoebiusMu[45]=1 because 45 = 3^2 * 5^1 and the binary digits of 2 and 1 add up to 2, an even number.
A unique representation of 48 over distinct terms of A050376 is 3*16. Since it contains even factors, then a(48)=1; for 54 such a representation is 2*3*9, thus a(54)=-1. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian)

Crossrefs

Sequences with related definitions: A008683, A008836, A064547, A302777.
Positions of -1: A000028.
Positions of 1: A000379.
Sequences used to express relationships between the terms: A000188, A003961, A007913, A008833, A059897, A225546.

Programs

  • Mathematica
    iMoebiusMu[n_] := Switch[MoebiusMu[n], 1, 1, -1, -1, 0, If[OddQ[Plus@@(DigitCount[Last[Transpose[FactorInteger[n]]], 2, 1])], -1, 1]];
    (* The Moebius inversion formula seems to hold for iMoebiusMu and the infinitary_divisors of n: if g[ n_ ] := Plus@@(f/@iDivisors[ n ]) for all n, then f[ n_ ]===Plus@@(iMoebiusMu[ # ]g[ n/# ]&/@iDivisors[ n ]) *)
    f[p_, e_] := (-1)^DigitCount[e, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; (-1) ^ subst( Pol( binary(e)), x, 1)))}; /* Michael Somos, Jan 08 2008 */
    
  • PARI
    a(n) = if (n==1, 1, (-1)^omega(core(n)) * a(core(n,1)[2])) \\ Peter Munn, Mar 16 2022
    
  • PARI
    a(n) = vecprod(apply(x -> (-1)^hammingweight(x), factor(n)[, 2])); \\ Amiram Eldar, Dec 23 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A064179(n): return prod(-1 if e.bit_count()&1 else 1 for e in factorint(n).values()) # Chai Wah Wu, Oct 12 2024
  • Scheme
    (define (A064179 n) (expt -1 (A064547 n))) ;; Antti Karttunen, Nov 23 2017
    

Formula

From Vladimir Shevelev Feb 20 2011: (Start)
Sum_{d runs through i-divisors of n} a(d)=1 if n=1, or 0 if n>1; Sum_{d runs through i-divisors of n} a(d)/d = A091732(n)/n.
Infinitary Moebius inversion:
If Sum_{d runs through i-divisors of n} f(d)=F(n), then f(n) = Sum_{d runs through i-divisors of n} a(d)*F(n/d). (End)
a(n) = (-1)^A064547(n). - R. J. Mathar, Apr 19 2011
Let k=k(n) be the number of terms of A050376 that divide n with odd maximal exponent. Then a(n) = (-1)^k. For example, if n=96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96)=3 and a(96)=-1. - Vladimir Shevelev, Oct 28 2013
From Peter Munn, Jan 25 2020: (Start)
a(A050376(n)) = -1; a(A059897(n,k)) = a(n) * a(k).
a(n^2) = a(n).
a(A003961(n)) = a(n).
a(A225546(n)) = a(n).
a(A000028(n)) = -1; a(A000379(n)) = 1.
(End)
a(n) = a(A007913(n)) * a(A008833(n)) = (-1)^A001221(A007913(n)) * a(A000188(n)). - Peter Munn, Mar 16 2022
From Amiram Eldar, Dec 23 2023: (Start)
Multiplicative with a(p^e) = (-1)^A000120(e).
Dirichlet g.f.: 1/Product_{k>=0} zeta(2^k * s) (Steuding et al., 2011). (End)

A225547 Fixed points of A225546.

Original entry on oeis.org

1, 2, 9, 12, 18, 24, 80, 108, 160, 216, 625, 720, 960, 1250, 1440, 1792, 1920, 2025, 3584, 4050, 5625, 7500, 8640, 11250, 15000, 16128, 17280, 18225, 21504, 24300, 32256, 36450, 43008, 48600, 50000, 67500, 100000, 135000, 143360, 162000, 193536, 218700, 286720, 321489, 324000, 387072, 437400, 450000, 600000
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

Every number in this sequence is the product of a unique subset of A225548.
From Peter Munn, Feb 11 2020: (Start)
The terms are the numbers whose Fermi-Dirac factors (see A050376) occur symmetrically about the main diagonal of A329050.
Closed under the commutative binary operation A059897(.,.). As numbers are self-inverse under A059897, the sequence thereby forms a subgroup of the positive integers under A059897.
(End)

Examples

			The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
		

Crossrefs

Subsequences: A191554, A191555, A225548.
Cf. fixed points of the comparable A122111 involution: A088902.

Programs

  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546
    pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i)););
    normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;}
    isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022

A252895 Numbers with an odd number of square divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Walker Dewey Anderson, Mar 22 2015

Keywords

Comments

Open lockers in the locker problem where the student numbers are the set of perfect squares.
The locker problem is a classic mathematical problem. Imagine a row containing an infinite number of lockers numbered from one to infinity. Also imagine an infinite number of students numbered from one to infinity. All of the lockers begin closed. The first student opens every locker that is a multiple of one, which is every locker. The second student closes every locker that is a multiple of two, so all of the even-numbered lockers are closed. The third student opens or closes every locker that is a multiple of three. This process continues for all of the students. [This is sometimes called the light switch problem - see A360845.]
A variant on the locker problem is when not all student numbers are considered; in the case of this sequence, only the square-numbered students open and close lockers. The sequence here is a list of the open lockers after all of the students have gone.
n is in the sequence if and only if it is the product of a squarefree number (A005117) and a fourth power (A000583). - Robert Israel, Apr 07 2015
Let D be the multiset containing d0(k), the divisor counting function, for each divisor k of n. n is in the sequence if and only if D admits a partition into two parts A and B such that the sum of the elements of A is exactly one more or less than the sum of the elements of B. For example, if n = 80, we have D = {1, 2, 2, 3, 4, 4, 5, 6, 8, 10}, and A = {1, 2, 3, 4, 4, 8} and B = {2, 5, 6, 10}. The sum of A is 22, and the sum of B is 23. - Griffin N. Macris, Oct 10 2016
From Amiram Eldar, Jul 07 2020: (Start)
Numbers k such that the largest square dividing k (A008833) is a fourth power.
The asymptotic density of this sequence is Pi^2/15 = A182448 = 0.657973... (Cesàro, 1885). (End)
Closed under the binary operation A059897(.,.), forming a subgroup of the positive integers under A059897. - Peter Munn, Aug 01 2020

Examples

			The set of divisors of 6 is {1,2,3,6}, which contains only one perfect square: 1; therefore 6 is a term.
The set of divisors of 16 is {1,2,4,8,16}, which contains three perfect squares: 1, 4, and 16; therefore 16 is a term.
The set of divisors of 4 is {1,2,4}, which contains two perfect squares: 1 and 4; therefore 4 is not a term.
		

Crossrefs

Positions of ones in A335324.

Programs

  • Haskell
    a252895 n = a252895_list !! (n-1)
    a252895_list = filter (odd . a046951) [1..]
    -- Reinhard Zumkeller, Apr 06 2015
  • Maple
    N:= 1000: # to get all terms <= N
    S:= select(numtheory:-issqrfree, {$1..N}):
    map(s -> seq(s*i^4, i = 1 .. floor((N/s)^(1/4))), S);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Apr 07 2015
  • Mathematica
    Position[Length@ Select[Divisors@ #, IntegerQ@ Sqrt@ # &] & /@ Range@ 70, Integer?OddQ] // Flatten (* _Michael De Vlieger, Mar 23 2015 *)
    a[n_] := DivisorSigma[0, Total[EulerPhi/@Select[Sqrt[Divisors[n]], IntegerQ]]]; Flatten[Position[a/@Range@100,?OddQ]] (* _Ivan N. Ianakiev, Apr 07 2015 *)
    Select[Range@ 100, OddQ@ Length@ DeleteCases[Divisors@ #, k_ /; ! IntegerQ@ Sqrt@ k] &] (* Michael De Vlieger, Oct 10 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, issquare(d)) % 2; \\ Michel Marcus, Mar 22 2015
    
  • Sage
    [n for n in [1..200] if len([x for x in divisors(n) if is_square(x)])%2==1] # Tom Edgar, Mar 22 2015
    

A339690 Positive integers of the form 4^i*9^j*k with gcd(k,6)=1.

Original entry on oeis.org

1, 4, 5, 7, 9, 11, 13, 16, 17, 19, 20, 23, 25, 28, 29, 31, 35, 36, 37, 41, 43, 44, 45, 47, 49, 52, 53, 55, 59, 61, 63, 64, 65, 67, 68, 71, 73, 76, 77, 79, 80, 81, 83, 85, 89, 91, 92, 95, 97, 99, 100, 101, 103, 107, 109, 112, 113, 115, 116, 117, 119, 121
Offset: 1

Views

Author

Griffin N. Macris, Dec 13 2020, and Peter Munn, Feb 03 2021

Keywords

Comments

Positive integers that survive sieving by the rule: if m appears then 2m, 3m and 6m do not.
Numbers whose squarefree part is congruent to 1 or 5 modulo 6.
Closed under multiplication.
Term by term, the sequence is one half of its complement within A007417, one third of its complement within A003159, and one sixth of its complement within A036668.
Asymptotic density is 1/2.
The set of all a(n) has maximal lower density (1/2) among sets S such that S, 2S, and 3S are disjoint.
Numbers which do not have 2 or 3 in their Fermi-Dirac factorization. Thus each term is a product of a unique subset of A050376 \ {2,3}.
It follows that the sequence is closed with respect to the commutative binary operation A059897(.,.), forming a subgroup of the positive integers considered as a group under A059897. It is the subgroup generated by A050376 \ {2,3}. A003159, A007417 and A036668 correspond to the nontrivial subgroups of its quotient group. It is the lexicographically earliest ordered transversal of the subgroup {1,2,3,6}, which in ordered form is the lexicographically earliest subgroup of order 4.

Examples

			Numbers are removed by the sieve only due to the presence of a smaller number, so 1 is in the sequence as the smallest positive integer. The sieve removes 2, as it is twice 1, which is in the sequence; so 2 is not in the sequence. The sieve removes 3, as it is three times 1, which is in the sequence, so 3 is not in the sequence. There are no integers m for which 3m = 4 or 6m = 4; 2m = 4 for m = 2, but 2 is not in the sequence; so the sieve does not remove 4, so 4 is in the sequence.
		

Crossrefs

Cf. A050376, A059897, A307150, A339746, A372574 (characteristic function).
Ordered first quadrisection of A052330.
Intersection of any 2 of A003159, A007417 and A036668.
A329575 divided by 3.

Programs

  • Mathematica
    Select[Range[117], EvenQ[IntegerExponent[#, 2]] && EvenQ[IntegerExponent[#, 3]] &]
    f[p_, e_] := p^Mod[e, 2]; core[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[121], CoprimeQ[core[#], 6] &] (* Amiram Eldar, Feb 06 2021 *)
  • PARI
    isok(m) = core(m) % 6 == 1 || core(m) % 6 == 5;
    
  • Python
    from itertools import count
    from sympy import integer_log
    def A339690(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,9)[0]+1):
                i2 = 9**i
                for j in count(0,2):
                    k = i2<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

{a(n) : n >= 1} = {m : A307150(m) = 6m, m >= 0}.
{a(n) : n >= 1} = {k : k = A052330(4m), m >= 0}.
A329575(n) = a(n) * 3.
{A036668(n) : n >= 0} = {a(n) : n >= 1} U {6 * a(n) : n >= 1}.
{A003159(n) : n >= 1} = {a(n) : n >= 1} U {3 * a(n) : n >= 1}.
{A007417(n) : n >= 1} = {a(n) : n >= 1} U {2 * a(n) : n >= 1}.
a(n) ~ 2n.

A268385 a(1) = 1, for n > 1, a(n) = A020639(n)^A193231(A067029(n)) * a(A028234(n)).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 4, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 12, 125, 26, 9, 56, 29, 30, 31, 16, 33, 34, 35, 216, 37, 38, 39, 20, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 18, 55, 28, 57, 58, 59, 120, 61, 62, 189, 64, 65, 66, 67, 136, 69, 70, 71, 108, 73, 74, 375, 152, 77, 78, 79, 160, 243
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Comments

Self-inverse permutation of natural numbers obtained by mapping the exponent of each prime in the prime factorization of n through involution A193231.
Multiplicative with p^e -> p^A193231(e), p prime and e > 0.

Examples

			For n = 4 = 2^2, A193231(2) = 3, thus a(4) = 2^3 = 8.
For n = 9 = 3^2, A193231(2) = 3, thus a(9) = 3^3 = 27.
For n = 72 = 2^3 * 3^2, as A193231(2) = 3 and vice versa A193231(3) = 2, we have a(72) = 2^2 * 3^3 = 108. Note also how a(72) = a(8*9) = a(8) * a(9) = 4*27.
For n = 81 = 3^4, A193231(4) = 5, thus a(81) = 3^5 = 243.
		

Crossrefs

Formula

a(1) = 1, and for n > 1, a(n) = A020639(n)^A193231(A067029(n)) * a(A028234(n)).
a(1) = 1, and for n > 1, a(n) = A000079(A193231(A007814(n))) * A003961(a(A064989(n))).
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 27 2019

A300840 Fermi-Dirac factorization prime shift towards smaller terms: a(n) = A052330(floor(A052331(n)/2)).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 3, 7, 4, 9, 6, 11, 5, 8, 13, 16, 7, 17, 12, 10, 9, 19, 6, 23, 11, 14, 15, 25, 8, 29, 13, 18, 16, 20, 21, 31, 17, 22, 12, 37, 10, 41, 27, 28, 19, 43, 26, 47, 23, 32, 33, 49, 14, 36, 15, 34, 25, 53, 24, 59, 29, 35, 39, 44, 18, 61, 48, 38, 20, 67, 21, 71, 31, 46, 51, 45, 22, 73, 52, 79, 37, 81, 30, 64, 41, 50, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 13 2018

Keywords

Comments

With n having a unique factorization as fdp(i) * fdp(j) * ... * fdp(k), with i, j, ..., k all distinct, a(n) = fdp(i-1) * fdp(j-1) * ... * fdp(k-1), where fdp(0) = 1 and fdp(n) = A050376(n) for n >= 1.
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018

Crossrefs

A left inverse of A300841.
Cf. also A064989.

Programs

  • Mathematica
    fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];
    prevFDPrime[n_] := Module[{k = n - 1}, While[! fdPrimeQ[k], k--]; k];
    fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];
    a[n_] := Times @@ prevFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300840(n) = A052330(A052331(n)>>1);

Formula

a(n) = A052330(floor(A052331(n)/2)).
For all n >= 1, a(A300841(n)) = n.
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 30 2019
Previous Showing 41-50 of 83 results. Next