cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A075589 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 9.

Original entry on oeis.org

89, 151, 233, 257, 263, 271, 353, 367, 373, 503, 541, 571, 587, 601, 647, 653, 727, 733, 751, 977, 991, 1013, 1181, 1291, 1321, 1433, 1453, 1621, 1753, 1861, 2281, 2371, 2377, 2671, 3061, 3079, 3203, 3323, 3793, 4051, 4073, 4283, 4357, 4519, 4591, 4639
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Examples

			For p = 233, the next prime number is 239. The numbers between 233 and 237 and the prime divisors are respectively 234 {2, 3, 13}, 235 {5, 47}, 236 {2, 59}, 237 {3, 79 }, 238 {2, 7, 17}. The set of prime divisors is {2, 3, 5, 7, 13, 17, 47, 59, 79} and has 9 elements, so 233 is a term.
		

Crossrefs

Programs

  • Magma
    a:=[]; for p in PrimesInInterval(2,5000) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 9 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019

Extensions

More terms from Matthew Conroy, Apr 30 2003

A060213 Lesser of twin primes whose average is 6 times a prime.

Original entry on oeis.org

11, 17, 29, 41, 101, 137, 281, 617, 641, 821, 1697, 1877, 2081, 2237, 2381, 2657, 2801, 3461, 3557, 3917, 4637, 4721, 5441, 6197, 6701, 8537, 8597, 9677, 10937, 12161, 12377, 12821, 12917, 13217, 13721, 13757, 13997, 14081, 16061, 17417
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Lowest factor-density among all positive consecutive integer triples; for p > 41, last digit of p can be only 1 or 7 (see Alexandrov link, p. 15). - Lubomir Alexandrov, Nov 25 2001

Examples

			102197 is here because 102198 = 17033*6 and 17033 is prime.
		

Crossrefs

Programs

  • Maple
    map(t -> 6*t-1, select(p -> isprime(p) and isprime(6*p-1) and isprime(6*p+1), [2,seq(i,i=3..10000,2)]));
  • Mathematica
    Transpose[Select[Partition[Prime[Range[2500]],2,1],#[[2]]-#[[1]] == 2 && PrimeQ[Mean[#]/6]&]][[1]] (* Harvey P. Dale, May 04 2014 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 6) && isprime((n+1)/6); \\ Michel Marcus, Dec 14 2013

Formula

a(n) = 6 * A060212(n) - 1. - Sean A. Irvine, Oct 31 2022

Extensions

Offset changed to 1 by Michel Marcus, Dec 14 2013

A060210 Largest prime factor of 1+smaller term of twin primes.

Original entry on oeis.org

2, 3, 3, 3, 5, 7, 5, 3, 17, 3, 23, 5, 5, 3, 11, 19, 5, 5, 47, 13, 29, 7, 3, 11, 29, 19, 5, 103, 107, 11, 5, 137, 23, 13, 7, 17, 43, 7, 59, 13, 3, 41, 71, 43, 31, 11, 17, 11, 19, 31, 67, 5, 139, 283, 41, 149, 13, 313, 23, 13, 37, 13, 347, 29, 11, 71, 17, 373, 7, 11, 13, 397, 17
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Also: Largest prime factor of the average, or the sum, of twin prime pairs. - M. F. Hasler, Jan 03 2011

Examples

			101 is the 9th lesser twin, 102 = 2*3*17, and its max p factor is 17=a(9).
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[1+#][[-1,1]]&/@Select[Partition[Prime[Range[500]],2,1], #[[2]]- #[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 16 2017 *)
  • PARI
    p=3; for(n=1,1e3, until(o+2==p,p=nextprime(2+o=p)); print1(vecmax(factor(p-1)[,1])","))  \\ M. F. Hasler, Jan 03 2011

A078883 Lesser member p of a twin prime pair such that p+1 is 3-smooth.

Original entry on oeis.org

3, 5, 11, 17, 71, 107, 191, 431, 1151, 2591, 139967, 472391, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967, 2348273369087, 56358560858111, 79164837199871, 84537841287167, 150289495621631, 578415690713087, 1141260857376767
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 11 2002

Keywords

Examples

			A000040(20) = 71 and 71+1 = 72 = 2^3*3^2 = A003586(17) and 71+2 = 73 = A000040(21), therefore 71 is a term.
		

Crossrefs

Apart from initial terms, same as A059960.

Programs

  • Mathematica
    seq[max_] := Select[Sort[Flatten[Table[2^i*3^j - 1, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {0, 2}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)

Formula

a(n) = A027856(n)-1 = A078884(n)-2.

A060211 Larger term of a pair of twin primes such that the prime factors of their average are only 2 and 3. Proper subset of A058383.

Original entry on oeis.org

7, 13, 19, 73, 109, 193, 433, 1153, 2593, 139969, 472393, 786433, 995329, 57395629, 63700993, 169869313, 4076863489, 10871635969, 2348273369089, 56358560858113, 79164837199873, 84537841287169, 150289495621633, 578415690713089, 1141260857376769, 57711166318706689
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Larger of twin primes p such that p-1 = (2^u)*(3^w), u,w >= 1.

Examples

			a(4) = 73, {71,73} are twin primes and (71 + 73)/2 = 72 = 2*2*2*3*3.
		

Crossrefs

Programs

  • Mathematica
    Take[Select[Sort[Flatten[Table[2^a 3^b,{a,250},{b,250}]]],AllTrue[#+{1,-1},PrimeQ]&]+1,23] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(p-2) && (vecmax(factor(p-1)[,1]) == 3); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A027856(n+1) + 1. - Amiram Eldar, Mar 17 2025

Extensions

Name corrected by Sean A. Irvine, Oct 31 2022

A060255 Smaller of twin primes {p, p+2} whose average p+1 = k*q is the least multiple of the n-th primorial number q such that k*q-1 and k*q+1 are twin primes.

Original entry on oeis.org

3, 5, 29, 419, 2309, 180179, 4084079, 106696589, 892371479, 103515091679, 4412330782859, 29682952539239, 22514519501013539, 313986271960080719, 22750921955774182169, 912496437361321252439, 26918644902158976946979, 1290172194953476680815969, 1901713815361424627522739779
Offset: 1

Views

Author

Labos Elemer, Mar 22 2001

Keywords

Comments

a(349) has 1001 digits. - Michael S. Branicky, Apr 19 2025

Examples

			a(13) = -1 + (2*3*5*7*...*41)*k(13) = 304250263527210*74 and {22514519501013539, 22514519501013542} are the corresponding primes; k(13)=74 is the smallest suitable multiplier. Twin primes obtained from primorial numbers with k=1 multiplier seem to be much rarer (see A057706).
For j=1,2,3,4,5,6, a(j)=A001359(1), A059960(1), A060229(1), A060230(1), A060231(1), A060232(1) respectively.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(q = prod(k=1, n, prime(k))); for(k=1, oo, if (isprime(q*k-1) && isprime(q*k+1), return(q*k-1)););} \\ Michel Marcus, Jul 10 2018
    
  • Python
    from itertools import count
    from sympy import primorial, isprime
    def a(n):
        p = primorial(n)
        return next(m-1 for m in count(p, p) if isprime(m-1) and isprime(m+1))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Apr 18 2025

Formula

a(n) = p = k(n)*q(n)-1, where q(n)=A002110(n) and k(n)=A060256(n) is the smallest integer whose multiplication by the n-th primorial yields p+1.

Extensions

a(2)=5 corrected by Ray Chandler, Apr 03 2009
a(18) and beyond from Michael S. Branicky, Apr 18 2025

A074167 Product of prime divisors of composite numbers between consecutive primes.

Original entry on oeis.org

1, 2, 6, 60, 6, 420, 6, 4620, 32760, 30, 471240, 14820, 42, 15180, 556920, 15273720, 30, 11171160, 164220, 6, 253333080, 2460, 587636280, 625757605200, 4620, 102, 289380, 6, 170940, 26848135265397670224000, 33540, 599888520, 138, 39560762839197600, 30
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2002

Keywords

Examples

			a(4) = product of prime factors of composite numbers between 7 and 11 = 2 * 3 * (2 * 5) = 60.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i[1], i=ifactors(j)[2]), j=ithprime(n)+1..ithprime(n+1)-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, May 29 2022
  • Mathematica
    Array[Times @@ Flatten@ Map[FactorInteger[#][[All, 1]] &, Range[#1 + 1, #2 - 1]] & @@ Prime[{#, # + 1}] &, 35] (* Michael De Vlieger, May 29 2022 *)
  • PARI
    a(n) = my(p=1); forcomposite(c=prime(n), prime(n+1), p*=factorback(factorint(c)[, 1])); p; \\ Michel Marcus, May 29 2022

Formula

a(n) = 6 <=> A000040(n) in { A059960 }. - Alois P. Heinz, May 29 2022

Extensions

Corrected and extended by Joshua Zucker, May 08 2006
Offset corrected by Alois P. Heinz, May 29 2022
Previous Showing 11-17 of 17 results.