cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A330627 Number of non-isomorphic phylogenetic trees with n nodes.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2019

Keywords

Comments

A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets. Each branching as well as each element of each leaf contributes to the number of nodes.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
  1  12  123  1234    12345    123456     1234567      12345678
              (1)(2)  (1)(23)  (1)(234)   (1)(2345)    (1)(23456)
                               (12)(34)   (12)(345)    (12)(3456)
                               (1)(2)(3)  (1)(2)(34)   (123)(456)
                                          (1)((2)(3))  (1)(2)(345)
                                                       (1)(23)(45)
                                                       (1)((2)(34))
                                                       (1)(2)(3)(4)
                                                       (12)((3)(4))
		

Crossrefs

Phylogenetic trees by number of labels are A005804, with unlabeled version A141268.
Balanced phylogenetic trees are A320154.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021

Formula

G.f.: A(x) satisfies A(x) = x*(1/(1-x) - A(x) - 2 + exp(Sum_{k>0} A(x^k)/k)). - Andrew Howroyd, Jan 02 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 02 2021

A376106 Expansion of e.g.f. LambertW(x / (1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 9, 56, 465, 4764, 58345, 830192, 13466817, 245254580, 4955259441, 109995693576, 2661003245329, 69682488950060, 1963774182830265, 59261538449833184, 1906643335934717697, 65149411890671521380, 2356212733788818122561, 89920484394446094721400
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[InverseSeries[Series[x / (2*x + E^(-x)), {x, 0, nmax}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 20 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(x/(1-2*x)))))
    
  • PARI
    a(n) = n!*sum(k=1, n, 2^(n-k)*(-k)^(k-1)*binomial(n-1, k-1)/k!);

Formula

E.g.f. A(x) satisfies A(x) = x * (2*A(x) + exp(-A(x))).
E.g.f.: Series_Reversion( x / (2*x + exp(-x)) ).
a(n) = n! * Sum_{k=1..n} 2^(n-k) * (-k)^(k-1) * binomial(n-1,k-1)/k!.

A231602 Triangular array read by rows: T(n,k) is the number of rooted labeled trees on n nodes that have exactly k nodes with outdegree = 1, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 0, 2, 3, 0, 6, 4, 36, 0, 24, 65, 80, 360, 0, 120, 306, 1950, 1200, 3600, 0, 720, 4207, 12852, 40950, 16800, 37800, 0, 5040, 38424, 235592, 359856, 764400, 235200, 423360, 0, 40320, 573057, 2766528, 8481312, 8636544, 13759200, 3386880, 5080320, 0, 362880
Offset: 1

Views

Author

Geoffrey Critzer, Nov 11 2013

Keywords

Comments

T(n,k) is also the number of functions f:{1,2,...,n-1}->{1,2,...,n} that have exactly k elements whose preimage has cardinality = 1.
T(n,n-1) = n! = A000142(n).
Column k = 0 = A060356(n).
Row sums = n^(n-1) = A000169(n).
Refinement given by A248120. Sum coefficients of the partition polynomials with h_1 = (1') = t and all other h_n = (n') = 1 to obtain this entry. - Tom Copeland, Feb 01 2016

Examples

			1;
0, 2;
3, 0, 6;
4, 36, 0, 24;
65, 80, 360, 0, 120;
306, 1950, 1200, 3600, 0, 720;
4207, 12852, 40950, 16800, 37800, 0, 5040;
38424, 235592, 359856, 764400, 235200, 423360, 0, 40320;
....0..........0........
....|........./ \.......
....0........0...0......
.../ \.......|..........
..0   0......0..........
T(4,1) = 36.  Both of these graphs on 4 nodes have exactly 1 node that has outdegree = 1.  There are 12 + 24 = 36 labelings.
		

Crossrefs

Programs

  • Maple
    with(combinat): C:= binomial:
    b:= proc(t, i, u) option remember; `if`(t=0, 1,
          `if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j)
          *b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i)))
        end:
    T:= (n, k)-> C(n, k)*C(n-1, k)*k! *b(n-1-k$2, n-k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Nov 12 2013
  • Mathematica
    nn=8;Table[Table[Drop[Range[0,nn]!CoefficientList[Series[-ProductLog[x/(-1-x+x y)],{x,0,nn}],{x,y}],1][[r,c]],{c,1,r}],{r,1,nn}]//Grid

Formula

E.g.f. satisfies A(x,y) = y*x*A(x,y) + x*( exp(A(x,y)) - A(x,y) ).

A305276 Expansion of e.g.f. 1/(1 + LambertW(-x/(1 - x))).

Original entry on oeis.org

1, 1, 6, 57, 748, 12565, 257526, 6232765, 173980920, 5502613833, 194477548330, 7596028355641, 324920533473108, 15106155118606045, 758463525318426942, 40901033617318501845, 2357682497456804486896, 144670077586483815863569, 9414952083720893890165842, 647715776085173413399687633
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

Lah transform of A000312.

Crossrefs

Programs

  • Maple
    S:= series(1/(1+LambertW(-x/(1-x))),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Aug 19 2018
  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 + LambertW[-x/(1 - x)]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[Sum[Binomial[n - 1, k - 1] k^k n!/k!, {k, n}], {n, 19}]]

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1)*k^k*n!/k!.
a(n) ~ n^n * (1 + exp(1))^(n - 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Aug 18 2018

A331577 Number of labeled rooted trees with n vertices and more than two branches of the root.

Original entry on oeis.org

0, 0, 0, 4, 65, 1026, 17857, 349224, 7657281, 186895270, 5037424601, 148805552556, 4784793219505, 166458635341194, 6231891513395745, 249886992888096976, 10686839817678846209, 485632267141865950926, 23370062118676064101801, 1187393725239246382405140
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2020

Keywords

Examples

			Non-isomorphic representatives of the a(6) = 1026 trees (in the format root[branches]) are:
  1[2,3,4[5[6]]]
  1[2,3[4],5[6]]
  1[2,3,4[5,6]]
  1[2,3,4,5[6]]
  1[2,3,4,5,6]
		

Crossrefs

The series-reduced version is A331578.
The unlabeled version is A331233.
Labeled rooted trees are counted by A000169.

Programs

  • Mathematica
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],Length[#]>2&]],{n,6}]
  • PARI
    seq(n)={my(f=serreverse(x*exp(O(x^n) -x ))); Vec(serlaplace(f - x*(1 + f + f^2/2)), -n)} \\ Andrew Howroyd, Jan 23 2020

Formula

For n > 1, a(n) = Sum_{k > 2} A206429(n, k).
E.g.f.: f(x) - x*(1 + f(x) + f(x)^2/2), where f(x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 23 2020

A335945 E.g.f. A(x) satisfies A(x) = exp(x*A(x)/(1 + x)).

Original entry on oeis.org

1, 1, 1, 4, 17, 116, 907, 9010, 102097, 1348408, 19939571, 330204854, 6015657529, 120016789348, 2597201945899, 60667591974826, 1520434054966433, 40710815980598000, 1159627208850209251, 35018022339726428926, 1117395892399939407241, 37569709612314269554396
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 01 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = Exp[x A[x]/(1 + x)] + O[x]^(nmax + 1) // Normal, nmax + 1];CoefficientList[A[x], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[-(1 + x) LambertW[-x/(1 + x)]/x, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] (k + 1)^(k - 1) n!/k!, {k, 0, n}], {n, 0, 21}]
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1+x))))) \\ Seiichi Manyama, Mar 05 2023

Formula

E.g.f.: -(1 + x) * LambertW(-x/(1 + x)) / x.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * (k+1)^(k-1) * n! / k!.
a(n) ~ (exp(1) - 1)^(n + 1/2) * n^(n-1) / exp(n - 1/2). - Vaclav Kotesovec, Jul 01 2020
E.g.f.: exp ( -LambertW(-x/(1+x)) ). - Seiichi Manyama, Mar 05 2023

A300402 Smallest integer i such that TREE(i) >= n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Felix Fröhlich, Mar 05 2018

Keywords

Comments

The sequence grows very slowly.
A rooted tree is a tree containing one special node labeled the "root".
TREE(n) gives the largest integer k such that a sequence T(1), T(2), ..., T(k) of vertex-colored (using up to n colors) rooted trees, each one T(i) having at most i vertices, exists such that T(i) <= T(j) does not hold for any i < j <= k. - Edited by Gus Wiseman, Jul 06 2020

Examples

			TREE(1) = 1, so a(n) = 1 for n <= 1.
TREE(2) = 3, so a(n) = 2 for 2 <= n <= 3.
TREE(3) > A(A(...A(1)...)), where A(x) = 2[x+1]x is a variant of Ackermann's function, a[n]b denotes a hyperoperation and the number of nested A() functions is 187196, so a(n) = 3 for at least 4 <= n <= A^A(187196)(1).
		

Crossrefs

Labeled rooted trees are counted by A000169 and A206429.

A331727 E.g.f.: -LambertW(-x/(1 + x)) / (1 + x).

Original entry on oeis.org

0, 1, -2, 9, -32, 225, -1044, 11515, -53696, 1056321, -2809700, 164953371, 374457744, 42734920657, 415505963068, 17518516958475, 310367497789696, 10529847396874497, 258747727039635132, 8599295530916762779, 258064489282796717200, 9014901067536225062481
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[-LambertW[-x/(1 + x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k Binomial[n, k]^2 k! (n - k)^(n - k - 1), {k, 0, n - 1}], {n, 0, 21}]
  • PARI
    seq(n)={Vec(serlaplace(-lambertw(-x/(1 + x) + O(x*x^n)) / (1 + x)), -(n+1))} \\ Andrew Howroyd, Jan 25 2020

Formula

a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n,k)^2 * k! * (n - k)^(n - k - 1).
a(n) ~ (1 - exp(-1))^(n + 3/2) * n^(n-1). - Vaclav Kotesovec, Jan 26 2020

A376107 Expansion of e.g.f. LambertW(x / (1 - 3*x)).

Original entry on oeis.org

0, 1, 4, 27, 260, 3265, 50634, 935263, 20053816, 489677697, 13416375950, 407609962111, 13600700469828, 494442286466401, 19452778285314178, 823489845351967935, 37323572563440199664, 1803303384581598518785, 92523649833821902792086
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[InverseSeries[Series[x / (3*x + E^(-x)), {x, 0, nmax}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 20 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(x/(1-3*x)))))
    
  • PARI
    a(n) = n!*sum(k=1, n, 3^(n-k)*(-k)^(k-1)*binomial(n-1, k-1)/k!);

Formula

E.g.f. A(x) satisfies A(x) = x * (3*A(x) + exp(-A(x))).
E.g.f.: Series_Reversion( x / (3*x + exp(-x)) ).
a(n) = n! * Sum_{k=1..n} 3^(n-k) * (-k)^(k-1) * binomial(n-1,k-1)/k!.

A305304 Expansion of e.g.f. 1/(1 + LambertW(-x/(1 + x))).

Original entry on oeis.org

1, 1, 2, 9, 52, 405, 3786, 42301, 542984, 7924041, 129110230, 2327399481, 45940938924, 986045445853, 22856850513602, 569163515043285, 15150885843083536, 429364157810169105, 12905794670246364078, 410108007771441394129, 13736898888997174964660, 483740530150449507164901, 17866185834825657429606682
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

Inverse Lah transform of A000312.

Crossrefs

Programs

  • Maple
    a:=series(1/(1+LambertW(-x/(1+x))),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + LambertW[-x/(1 + x)]), {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] k^k n!/k!, {k, n}], {n, 22}]]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*k^k*n!/k!.
a(n) ~ n^n * (exp(1) - 1)^(n - 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Aug 18 2018
Previous Showing 21-30 of 32 results. Next