cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A203444 Numbers in range of Dedekind Psi function: A001615.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 36, 38, 42, 44, 48, 54, 56, 60, 62, 68, 72, 74, 80, 84, 90, 96, 98, 102, 104, 108, 110, 112, 114, 120, 126, 128, 132, 138, 140, 144, 150, 152, 158, 160, 162, 164, 168, 174, 176, 180, 182, 186, 192, 194, 198, 200
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 02 2012

Keywords

Comments

a(n) is even for n>2

Crossrefs

Programs

  • Mathematica
    terms = 100; Clear[seq]; seq[k_] := seq[k] = Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 1, k terms}] // Union // PadRight[#, terms]&;
    seq[k = 1]; seq[k++]; While[Print[k]; seq[k] != seq[k-1], k++];
    seq[k] (* Jean-François Alcover, Dec 14 2018, after Jan Mangaldan in A001615 *)

A344222 a(n) = Sum_{k=1..n} tau(gcd(k,n)^4), where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 6, 7, 16, 9, 42, 11, 36, 25, 54, 15, 112, 17, 66, 63, 76, 21, 150, 23, 144, 77, 90, 27, 252, 49, 102, 79, 176, 33, 378, 35, 156, 105, 126, 99, 400, 41, 138, 119, 324, 45, 462, 47, 240, 225, 162, 51, 532, 81, 294, 147, 272, 57, 474, 135, 396, 161, 198, 63, 1008, 65, 210, 275, 316, 153, 630, 71
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0,GCD[k,n]^4],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *)
    f[p_, e_] := (p^e*(p + 3) - 4)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n)^4));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^4));
    
  • PARI
    a(n) = n*sumdiv(n, d, 4^omega(d)/d);

Formula

a(n) = Sum_{d|n} phi(n/d) * tau(d^4).
a(n) = n * Sum_{d|n} 4^omega(d) / d.
If p is prime, a(p) = 4 + p.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p^e*(p + 3) - 4)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 3/p^2) = 2.4997873122... . (End)

A344304 Number of cyclic subgroups of the group (C_n)^8, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 256, 3281, 32896, 97657, 839936, 960801, 4210816, 7176641, 25000192, 21435889, 107931776, 67977561, 245965056, 320412617, 538984576, 435984841, 1837220096, 943531281, 3212524672, 3152388081, 5487587584, 3559590241, 13815687296, 7629472657, 17402255616
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160908.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160908(n) = sumdiv(n, d, moebius(n/d)*d^8)/eulerphi(n);
    a(n) = sumdiv(n, d, a160908(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_8|n} phi(x_1)*phi(x_2)* ... *phi(x_8)/phi(lcm(x_1, x_2, ..., x_8)).
If p is prime, a(p) = 1 + (p^8 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)).
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)/8) * Product_{p prime} ((1-1/p^7)/(p^2*(1-1/p))) = 0.2432888374... . (End)

A344305 Number of cyclic subgroups of the group (C_n)^9, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 512, 9842, 131328, 488282, 5039104, 6725602, 33620224, 64576643, 250000384, 235794770, 1292530176, 883708282, 3443508224, 4805671444, 8606777600, 7411742282, 33063241216, 17927094322, 64125098496, 66193374884, 120726922240, 81870575522, 330890244608
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160953.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160953(n) = sumdiv(n, d, moebius(n/d)*d^9)/eulerphi(n);
    a(n) = sumdiv(n, d, a160953(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_9|n} phi(x_1)*phi(x_2)* ... *phi(x_9)/phi(lcm(x_1, x_2, ..., x_9)).
If p is prime, a(p) = 1 + (p^9 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)).
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} ((1-1/p^8)/(p^2*(1-1/p))) = 0.2161023934... . (End)

A344306 Number of cyclic subgroups of the group (C_n)^10, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1024, 29525, 524800, 2441407, 30233600, 47079209, 268698112, 581150417, 2500000768, 2593742461, 15494720000, 11488207655, 48209110016, 72082541675, 137573433856, 125999618779, 595098027008, 340614792101, 1281250393600
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160957.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160957(n) = sumdiv(n, d, moebius(n/d)*d^10)/eulerphi(n);
    a(n) = sumdiv(n, d, a160957(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_10|n} phi(x_1)*phi(x_2)* ... *phi(x_10)/phi(lcm(x_1, x_2, ..., x_10)).
If p is prime, a(p) = 1 + (p^10 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} ((1-1/p^9)/(p^2*(1-1/p))) = 0.1944248708... . (End)

A054584 Number of subgroups of the group generated by a^n=1, b^3=1 and ab=ba.

Original entry on oeis.org

2, 4, 6, 6, 4, 12, 4, 8, 10, 8, 4, 18, 4, 8, 12, 10, 4, 20, 4, 12, 12, 8, 4, 24, 6, 8, 14, 12, 4, 24, 4, 12, 12, 8, 8, 30, 4, 8, 12, 16, 4, 24, 4, 12, 20, 8, 4, 30, 6, 12, 12, 12, 4, 28, 8, 16, 12, 8, 4, 36, 4, 8, 20, 14, 8, 24, 4, 12, 12, 16, 4, 40, 4, 8, 18, 12, 8, 24, 4, 20, 18, 8, 4
Offset: 1

Views

Author

John W. Layman, Apr 12 2000

Keywords

Comments

Also the number of subgroups of the group C_n X C_3 (where C_n is the cyclic group of order n). Number of subgroups of the group C_n X C_m is Sum_{i|n,j|m} gcd(i,j).

Crossrefs

Programs

  • Haskell
    a054584 n = a000005 n + 3 * a079978 n * a000005 (a051176 n) + a035191 n
    -- Reinhard Zumkeller, Aug 27 2012
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 2*e+1:else b := e+1:fi:s := s*b:od:printf(`%d,`,2*s); od:
  • Mathematica
    f[d_ /; Mod[d, 3] == 0] = 4; f[] = 2; a[n] := Total[f /@ Divisors[n]]; Table[a[n], {n, 1, 100}](* Jean-François Alcover, Nov 21 2011, after Michael Somos *)
    f[p_, e_] := e + 1; f[3, e_] := 2*e + 1; a[1] = 2; a[n_] := 2*Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, (d%3==0)*2+2)) /* Michael Somos, Sep 20 2005 */
    

Formula

a(n) = tau(n)+3*tau(n/3)+A035191(n) if n is congruent to 0 mod 3 else tau(n)+A035191(n), where A035191(n) is the number of divisors of n that are not congruent to 0 mod 3.
a(n)/2 is multiplicative with a(3^e)=2e+1 and a(p^e)=e+1 for p<>3.
Moebius transform is period 3 sequence [2, 2, 4, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^k(2+2*x^k+4*x^(2k))/(1-x^(3k)).
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: 2 * zeta(s)^2 * (1 + 1/3^s).
Sum_{k=1..n} a(k) ~ 2*(4*n*log(n) + (8*gamma - 4 - log(3))*n)/3, where gamma is Euler's constant (A001620). (End)

Extensions

Additional comments from Vladeta Jovovic, Oct 25 2001

A062368 Multiplicative with a(p^e) = (e+1)*(e+2)*(4*e+3)/6.

Original entry on oeis.org

1, 7, 7, 22, 7, 49, 7, 50, 22, 49, 7, 154, 7, 49, 49, 95, 7, 154, 7, 154, 49, 49, 7, 350, 22, 49, 50, 154, 7, 343, 7, 161, 49, 49, 49, 484, 7, 49, 49, 350, 7, 343, 7, 154, 154, 49, 7, 665, 22, 154, 49, 154, 7, 350, 49, 350, 49, 49, 7, 1078, 7, 49, 154, 252, 49, 343, 7, 154
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

Conjecture: this is the third inverse Mobius transform of the sequence 4^A001221(n). - R. J. Mathar, Aug 09 2012

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)*(4*e+3)/6; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)

Formula

a(n) = Sum_{i|n, j|n} tau(i)*tau(j)/tau(gcd(i, j)), where tau(n) = number of divisors of n, cf. A000005.
Also a(n) = Sum_{i|n, j|n} tau(lcm(i, j)).
a(n) = Sum_{d|n} tau_3(d^2) = Sum_{d|n} A007425(d^2). - Enrique Pérez Herrero, Jan 17 2013

A064803 Number of subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 16, 28, 129, 64, 448, 116, 802, 445, 1024, 268, 3612, 368, 1856, 1792, 4387, 616, 7120, 764, 8256, 3248, 4288, 1108, 22456, 2607, 5888, 5776, 14964, 1744, 28672, 1988, 22308, 7504, 9856, 7424, 57405, 2816, 12224, 10304, 51328, 3448, 51968, 3788, 34572, 28480, 17728, 4516, 122836, 9009, 41712
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 21 2001

Keywords

Crossrefs

Programs

  • Maple
    A064803 := proc(n)
        local a,f,nu,p,j ;
        a := 1 ;
        for f in ifactors(n)[2] do
            nu := op(2,f) ;
            p := op(1,f) ;
            add( (nu-floor((j-1)/2))*(2*j-floor((j-1)/2))*p^(2*nu-j),j=0..2*nu) ;
            a := a*% ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2013
  • Mathematica
    f[p_, e_] := Sum[(e - Floor[(j - 1)/2])*(2*j - Floor[(j - 1)/2])*p^(2*e - j), {j, 0, 2*e}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)

Formula

For a prime p: a(p) = 2*(p^2+p+2). - Vladeta Jovovic, Oct 22 2001
Multiplicative with a(p^e) = Sum_{j=0..2*e} (e - floor((j - 1)/2))*(2*j - floor((j - 1)/2))*p^(2*e - j). - Amiram Eldar, Nov 29 2022

Extensions

More terms from Laszlo Toth, May 11 2013

A063182 Number of cyclic subgroups of the group S_n X S_n (where S_n is the symmetric group of degree n).

Original entry on oeis.org

1, 4, 26, 314, 5222, 168632, 5736908, 291993032, 18599068328, 1547379999392, 136254185631632, 18749419634845088, 2367416741670079712, 387737484226037810048, 78779133220155242489792, 17651532033334188604514432, 3945247307615376458903485568
Offset: 1

Views

Author

Vladeta Jovovic, Jul 10 2001

Keywords

Crossrefs

Cf. A051625, A060648, (unlabeled case) A063183.

Extensions

a(9)-a(17) from Stephen A. Silver, Feb 22 2013

A308443 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(psi(k)/k), where psi() is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 1, 5, 23, 173, 1249, 13249, 130255, 1670297, 21350177, 322709021, 4933457671, 87302545285, 1551234590593, 30934738239833, 630934308253439, 14035903893341489, 320008164205036225, 7885477719156600757, 198735099970790861047, 5352424525748204265821
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^(DirichletConvolve[j, MoebiusMu[j]^2, j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Sum[2^PrimeNu[d]/d, {d, Divisors[k]}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(Sum_{k>=1} A060648(k)*x^k/k).
Previous Showing 21-30 of 37 results. Next