cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A271971 Decimal expansion of (6/Pi^2) Sum_{p prime} 1/(p(p+1)), a Meissel-Mertens constant related to the asymptotic density of certain sequences of integers.

Original entry on oeis.org

2, 0, 0, 7, 5, 5, 7, 2, 2, 0, 1, 9, 2, 6, 5, 9, 8, 6, 9, 9, 6, 2, 5, 0, 7, 2, 3, 1, 1, 4, 4, 0, 4, 7, 6, 5, 8, 5, 3, 5, 3, 5, 5, 5, 5, 3, 5, 2, 5, 6, 1, 9, 1, 6, 1, 5, 9, 7, 6, 3, 2, 9, 8, 3, 6, 5, 2, 5, 4, 0, 7, 4, 7, 4, 7, 9, 6, 4, 9, 7, 9, 1, 2, 1, 1, 9, 0, 9, 4, 2, 6, 8, 4, 5, 0, 3, 5, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Comments

This is the density of A060687, the numbers with one 2 and the rest 1s in the exponents of its prime factorization. - Charles R Greathouse IV, Aug 03 2016

Examples

			0.200755722019265986996250723114404765853535555352561916...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens Constants, p. 95.

Crossrefs

Programs

  • Mathematica
    digits = 100; S = (6/Pi^2)*NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[ S, 10, digits] // First
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2, (-1)^k*primezeta(k))*6/Pi^2 \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1)))/zeta(2) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (6/Pi^2)*A179119.

A320632 Numbers k such that there exists a pair of factorizations of k into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

36, 60, 72, 84, 90, 100, 108, 120, 126, 132, 140, 144, 150, 156, 168, 180, 196, 198, 200, 204, 210, 216, 220, 225, 228, 234, 240, 252, 260, 264, 270, 276, 280, 288, 294, 300, 306, 308, 312, 315, 324, 330, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 390
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Positions of nonzero terms in A322437 or A322438.
Mats Granvik has conjectured that these are all the positive integers k such that sigma_0(k) - 2 > (bigomega(k) - 1) * omega(k), where sigma_0 = A000005, omega = A001221, and bigomega = A001222. - Gus Wiseman, Nov 12 2019
Numbers with more semiprime divisors than prime divisors. - Wesley Ivan Hurt, Jun 10 2021

Examples

			An example of such a pair for 36 is (4*9)|(6*6).
		

Crossrefs

The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[Subsets[facs[#],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    has_at_least_one_ndfpair(z) = { for(i=1,#z,for(j=i+1,#z,if(is_ndf_pair(z[i],z[j]),return(1)))); (0); };
    isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

A195087 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 3.

Original entry on oeis.org

16, 48, 72, 80, 81, 108, 112, 162, 176, 200, 208, 240, 272, 304, 336, 360, 368, 392, 405, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 656, 675, 688, 752, 756, 792, 810, 816, 848, 880, 891, 900, 912, 936, 944, 968, 976
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (Sum_{p prime} 1/(p^3*(p+1)) + Sum_{p != q primes} 1/(p^2*(p+1)*q*(q+1)) + Sum_{p < q < r primes} 1/(p*(p+1)*q*(q+1)*r*(r+1)))/zeta(2) = 0.04761... . - Amiram Eldar, Sep 03 2022

Crossrefs

Programs

  • Haskell
    a195087 n = a195087_list !! (n-1)
    a195087_list = filter ((== 3) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[1000],PrimeOmega[#]-PrimeNu[#]==3&]
  • PARI
    is(n)=bigomega(n)-omega(n)==3 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A001222(a(n)) - A001221(a(n)) = 3.
A046660(a(n)) = 3. - Reinhard Zumkeller, Nov 29 2015

A195089 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 5.

Original entry on oeis.org

64, 192, 288, 320, 432, 448, 648, 704, 729, 800, 832, 960, 972, 1088, 1216, 1344, 1440, 1458, 1472, 1568, 1856, 1984, 2000, 2016, 2112, 2160, 2240, 2368, 2400, 2496, 2624, 2752, 3008, 3024, 3168, 3240, 3264, 3392, 3520, 3600, 3645, 3648, 3744, 3776, 3872, 3904
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0118439..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195089 n = a195089_list !! (n-1)
    a195089_list = filter ((== 5) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[4000],PrimeOmega[#]-PrimeNu[#]==5&]
  • PARI
    is(n)=bigomega(n)-omega(n)==5 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 5. - Reinhard Zumkeller, Nov 29 2015

A195091 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 7.

Original entry on oeis.org

256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 3200, 3328, 3840, 3888, 4352, 4864, 5376, 5760, 5832, 5888, 6272, 6561, 7424, 7936, 8000, 8064, 8448, 8640, 8748, 8960, 9472, 9600, 9984, 10496, 11008, 12032, 12096, 12672, 12960, 13056, 13122, 13568
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0029589..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195091 n = a195091_list !! (n-1)
    a195091_list = filter ((== 7) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[14000],PrimeOmega[#]-PrimeNu[#]==7&]
  • PARI
    is(n)=bigomega(n)-omega(n)==7 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 7. - Reinhard Zumkeller, Nov 29 2015

A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n.

Original entry on oeis.org

1, 4, 9, 8, 24, 27, 16, 48, 72, 80, 32, 96, 144, 160, 216, 64, 192, 288, 320, 432, 448, 128, 384, 576, 640, 864, 896, 1296, 256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Comments

At the suggestion of Michel Marcus's remark in Carlos Eduardo Olivieri's A261256.

Examples

			0:    1
1:    4     9
2:    8    24      27
3:   16    48      72    80
4:   32    96     144   160     216
5:   64   192     288   320     432   448
6:  128   384     576   640     864   896    1296
7:  256   768    1152  1280    1728  1792    2592   2816
8:  512  1536    2304  2560    3456  3584    5184   5632    6400
--  ------------------------------------------------------------
0:  1
1:  2^2   3^2
2:  2^3 2^3*3     3^3
3:  2^4 2^4*3 2^3*3^2 2^4*5
4:  2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3
5:  2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7
6:  2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4
7:  2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11
8:  2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2
		

Crossrefs

Programs

  • Haskell
    a257851 n k = a257851_tabl !! n !! k
    a257851_row n = a257851_tabl !! n
    a257851_tabl = map
       (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..]
  • Mathematica
    T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Sep 17 2021 *)

Formula

T(n,0) = A151821(n+1);
T(n,n-1) = A261256(n) for n > 0;
T(n,n) = A264959(n).
T(0,0) = A005117(1);
T(1,k) = A060687(k+1), k = 0..1;
T(2,k) = A195086(k+1), k = 0..2;
T(3,k) = A195087(k+1), k = 0..3;
T(4,k) = A195088(k+1), k = 0..4;
T(5,k) = A195089(k+1), k = 0..5;
T(6,k) = A195090(k+1), k = 0..6;
T(7,k) = A195091(k+1), k = 0..7;
T(8,k) = A195092(k+1), k = 0..8;
T(9,k) = A195093(k+1), k = 0..9;
T(10,k) = A195069(k+1), k = 0..10.

A261256 Let S_k denote the sequence of numbers j such that A001222(j) - A001221(j) = k. Then a(n) is the n-th term of S_n.

Original entry on oeis.org

4, 24, 72, 160, 432, 896, 2592, 5632, 12800, 26624, 61440, 124416, 278528, 622592, 1376256, 2949120, 5971968, 12058624, 25690112, 60817408, 130023424, 262144000, 528482304, 1107296256, 2264924160, 4586471424, 9395240960, 19864223744, 40265318400, 83751862272
Offset: 1

Views

Author

Keywords

Comments

S_0 would correspond to the squarefree numbers (A005117), that is, numbers j such that A001222(j) = A001221(j). Note that S_0 is excluded from the scheme. - Michel Marcus, Sep 21 2015

Examples

			For n = 1, S_1 = {4, 9, 12, 18, 20, 25, ...}, so a(1) = S_1(1) = 4.
For n = 2, S_2 = {8, 24, 27, 36, 40, 54, ...}, so a(2) = S_2(2) = 24.
For n = 3, S_3 = {16, 48, 72, 80, 81, 108, ...}, so a(3) = S_3(3) = 72.
For n = 4, S_4 = {32, 96, 144, 160, 216, 224, ...}, so a(4) = S_4(4) = 160.
For n = 5, S_5 = {64, 192, 288, 320, 432, 448, ...}, so a(5) = S_5(5) = 432.
		

Crossrefs

Programs

  • Haskell
    a261256 n = a257851 n (n - 1)  -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    OutSeq = {}; For[i = 1, i <= 16, i++, l = Select[Range[10^2*2^i], PrimeOmega[#] - PrimeNu[#] == i &]; AppendTo[OutSeq, l[[i]]]]; OutSeq
  • PARI
    a(n) = {ik = 1; nbk = 0; while (nbk != n, ik++; if (bigomega(ik) == omega(ik) + n, nbk++);); ik;} \\ Michel Marcus, Oct 06 2015
    

Formula

a(n+1) > 2*a(n).
a(n) >= 2^prime(n) for n < 5.
a(n) = A257851(n,n-1). - Reinhard Zumkeller, Nov 29 2015
a(n) = b(n)*2^(n+1), where b(n) consists of the values of k/2^excess(k) over odd k, sorted in ascending order. In particular, a(n) <= prime(n)*2^(n+1), with equality only when n = 2. - Charlie Neder, Jan 31 2019

Extensions

a(17)-a(21) from Jon E. Schoenfield, Sep 12 2015
More terms from Charlie Neder, Jan 31 2019

A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Comments

First differs from A084227 in having 60.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
		

Crossrefs

Zeros of A328958.
The complement is A328957.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - omega(n) * Omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) = A001222(a(n)) * A001221(a(n)).

A048107 Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers with at most one 2 and no 3s or higher in their prime exponents. - Charles R Greathouse IV, Aug 25 2016
A disjoint union of A005117 and A060687. The asymptotic density of this sequence is (6/Pi^2) * (1 + Sum_{p prime} 1/(p*(p+1))) = A059956 * (1 + A179119) = A059956 + A271971 = 0.8086828238... - Amiram Eldar, Nov 07 2020

Examples

			n = 420 = 2*2*3*5*7, 4 distinct prime factors, 24 divisors of which 16 are unitary and 8 are not; ud(n) > nud(n) and 2^(4+1) = 32 is larger than d, the number of divisors.
		

Crossrefs

Complement of A048108.
A072357 is a subsequence.

Programs

  • Mathematica
    Select[Range[500], 2^(1 + PrimeNu[#]) > DivisorSigma[0, #] &] (* G. C. Greubel, May 05 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>2, return(0), t=1))); 1 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)=n==1 || factorback(factor(n)[,2])<3 \\ Charles R Greathouse IV, Aug 25 2016

Formula

Numbers for which 2^(r(n)+1) > d(n), where r = A001221, d = A000005.

A195069 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 10.

Original entry on oeis.org

2048, 6144, 9216, 10240, 13824, 14336, 20736, 22528, 25600, 26624, 30720, 31104, 34816, 38912, 43008, 46080, 46656, 47104, 50176, 59392, 63488, 64000, 64512, 67584, 69120, 69984, 71680, 75776, 76800, 79872, 83968, 88064, 96256, 96768, 101376, 103680, 104448
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0003698..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 25 2024

Examples

			14336 = 2^11 * 7^1, so it has 12 prime factors (counted with multiplicity) and 2 distinct prime factors, and 12-2 = 10.
		

Crossrefs

Programs

  • Haskell
    a195069 n = a195069_list !! (n-1)
    a195069_list = filter ((== 10) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
    
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=10, [$1..104448])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[200000], PrimeOmega[#] - PrimeNu[#] == 10&]
  • PARI
    isok(n) = bigomega(n) - omega(n) == 10; \\ Michel Marcus, Jul 03 2018

Formula

A046660(a(n)) = 10. - Reinhard Zumkeller, Nov 29 2015
Previous Showing 11-20 of 55 results. Next