cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A061044 Denominator of 1/25 - 1/n^2.

Original entry on oeis.org

1, 900, 1225, 1600, 2025, 100, 3025, 3600, 4225, 4900, 225, 6400, 7225, 8100, 9025, 80, 11025, 12100, 13225, 14400, 625, 16900, 18225, 19600, 21025, 180, 24025, 25600, 27225, 28900, 1225, 32400, 34225, 36100, 38025, 1600, 42025
Offset: 5

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061041 for comments, references, links.
Cf. A061043 (numerator).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061044 = denominator . (1 % 25 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
  • Mathematica
    Table[Denominator[1/5^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
  • PARI
    a(n) = denominator(1/25 - 1/n^2); \\ Michel Marcus, Aug 15 2013
    

A143025 Period length 4: repeat [1, 8, 2, 8].

Original entry on oeis.org

1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8
Offset: 0

Views

Author

Paul Curtz, Oct 13 2008

Keywords

Comments

Numerator of 1/n^2-1/(3n)^2 if n>0.
This can be generated from the transitions between principal quantum numbers n and 3n in the Hydrogen series: A005563(2), A061037(6), A061039(9), A061041(12), A061043(15), A061045(18), A061047(21), A061049(24),... (The mention of A005563(2) is somewhat a fluke to maintain the periodic pattern.)
Related to the continued fraction of (12*sqrt(55)-72)/19 = 0.89444115.. = 0+1/(1+1/(8+1/(2+...))). - R. J. Mathar, Jun 27 2011

Crossrefs

Programs

Formula

a(n+4) = a(n).
G.f.: (1+8*x+2*x^2+8*x^3)/(1-x^4).
From Wesley Ivan Hurt, Jul 10 2016: (Start)
a(n) = (19 - 13*I^(2*n) - I^(-n) - I^n)/4, where I = sqrt(-1).
a(n) = (19 - 2*cos(n*Pi/2) - 13*cos(n*Pi))/4. (End)

Extensions

Partially edited by R. J. Mathar, Dec 10 2008

A349487 a(n) = A132739((n-5)*(n+5)).

Original entry on oeis.org

11, 24, 39, 56, 3, 96, 119, 144, 171, 8, 231, 264, 299, 336, 3, 416, 459, 504, 551, 24, 651, 704, 759, 816, 7, 936, 999, 1064, 1131, 48, 1271, 1344, 1419, 1496, 63, 1656, 1739, 1824, 1911, 16, 2091, 2184, 2279, 2376, 99, 2576, 2679, 2784, 2891, 24, 3111
Offset: 6

Views

Author

Simon Strandgaard, Nov 19 2021

Keywords

Comments

Shares 614 initial terms with A061043. First difference is A061043(620)=615 vs. a(620)=123.

Examples

			a(9)  = A132739(( 9-5)*( 9+5)) = A132739(56) = 56,
a(10) = A132739((10-5)*(10+5)) = A132739(75) = 3,
a(11) = A132739((11-5)*(11+5)) = A132739(96) = 96.
		

Crossrefs

Programs

  • Mathematica
    Table[Last@Select[Divisors[(n - 5)*(n + 5)], Mod[#, 5] != 0 &], {n, 6,
       56}] (* Giorgos Kalogeropoulos, Nov 19 2021 *)
    Table[(n - 5)*(n + 5)/5^IntegerExponent[(n - 5)*(n + 5), 5], {n, 6, 56}] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A132739(n)=n/5^valuation(n, 5);
    a(n) = A132739((n-5)*(n+5));
    [a(n)|n<-[6..25]]
    
  • Python
    def A349487(n):
        a, b = divmod(n*n-25, 5)
        while b == 0:
            a, b = divmod(a,5)
        return 5*a+b # Chai Wah Wu, Dec 05 2021
  • Ruby
    p (6..25).map { |n| x = (n-5)*(n+5); x /= 5 while (x % 5) == 0; x }
    

Formula

a(n) = A132739(A098603(n-5)).

A177083 A006093(k)-fold repetition of A001248(k), k=1,2,3,..

Original entry on oeis.org

4, 9, 9, 25, 25, 25, 25, 49, 49, 49, 49, 49, 49, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169
Offset: 1

Views

Author

Paul Curtz, Dec 09 2010

Keywords

Comments

Consider the initial terms of numerator sequences (dropping initial zeros) of
3; A005563=N(1) ,
5,3; A061037=N(2) ,
7,16,1; A061039=N(3) ,
9,5,33,3; A061041=N(4) ,
11,24,39,56,3; A061043=N(5) ,
13,7,5,4,85,1; A061045=N(6) ,
15,32,51,72,95,120,3; A061047=N(7) ,
17,9,57,5,105,33,161,3; A061049=N(8) ,
19,40,7,88,115,16,175,208,1; N(9),
21,11,69,6,1,39,189,14,261,3; N(10),
23,48,75,104,135,168,203,240,279,320,3; N(11)
One must add the following associated (minimum) squares (taken from squared entries in A172038) to these values to reach the next possible square not larger than the entry itself:
1; N(1)
4,1; N(2)
9,9,0; N(3)
16,4,16,1; N(4)
25,25,25,25,1; N(5)
36,9,4,0,36,0; N(6)
49,49,49,49,49,49,1; N(7)
64,16,64,4,64,16,64,1, ; N(8)
Only if the index of N(.) is a prime we obtain a string of equal consecutive terms in these complementary rows: 4, 9, 25, 49, 121, 169..
The current sequence lists the consecutive complementary squares, A001248, in the rows with prime index, including their multiplicity (which is A006093).
This generates a link between the primes and the Rydberg-Ritz spectrum of the hydrogen atom.

Crossrefs

Previous Showing 11-14 of 14 results.