cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A188264 Numbers m that are divisible by the product of the factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 10, 11, 12, 20, 30, 100, 101, 102, 110, 111, 112, 120, 132, 200, 210, 212, 220, 240, 300, 312, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1032, 1100, 1101, 1102, 1104, 1110, 1111, 1112, 1120, 1200, 1210, 1212, 1220, 1320, 2000, 2010, 2012, 2020, 2100, 2110, 2112
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2011

Keywords

Examples

			Number 30 is in sequence because 30 is divisible by the product of factorials 3!*0! = 6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a188264 n = a188264_list !! (n-1)
    a188264_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod [1..] $ map a066459 [1..]
    -- Reinhard Zumkeller, Oct 11 2011
  • Mathematica
    Select[Range[2200],Divisible[#,Times@@(IntegerDigits[#]!)]&] (* Harvey P. Dale, May 24 2017 *)

A242855 Catalan numbers C(n) such that sum of the factorials of digits of C(n) is prime.

Original entry on oeis.org

2, 16796, 263747951750360, 1002242216651368, 104088460289122304033498318812080, 22033725021956517463358552614056949950, 1000134600800354781929399250536541864362461089950800, 216489185503133990863274261791925599831188392742851863147080
Offset: 1

Views

Author

K. D. Bajpai, May 24 2014

Keywords

Comments

The n-th Catalan number C(n) = (2*n)!/(n!*(n+1)!).
The next term, a(9), has 66 digits which is too large to display in data section.
The 102nd term, a(102), having 992 digits, is the last term in b-file.
a(103) has 1021 digits, hence not included in b-file.
Intersection of A000108 and A165451.

Examples

			16796 = (2*10)!/(10!*(10+1)!) is 10th Catalan number: 1!+6!+7!+9!+6! = 369361 which is prime.
263747951750360 = (2*28)!/(28!*(28+1)!) is 28th Catalan number: 2!+6!+3!+7!+4!+7!+9!+5!+1!+7!+5!+0!+3!+6!+0! = 379721 which is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A242855:= proc() if isprime(add( i!,i = convert(((2*n)!/(n!*(n+1)!)), base, 10))((2*n)!/(n!*(n+1)!))) then RETURN ((2*n)!/(n!*(n+1)!)); fi; end: seq(A242855 (), n=1..50);
  • Mathematica
    Select[CatalanNumber[Range[150]],PrimeQ[Total[IntegerDigits[#]!]]&] (* Harvey P. Dale, Apr 30 2025 *)

A303935 Size of orbit of n under repeated application of sum of factorial of digits of n.

Original entry on oeis.org

2, 1, 1, 16, 8, 10, 15, 32, 36, 35, 2, 2, 17, 33, 13, 10, 15, 32, 36, 35, 17, 17, 9, 37, 7, 12, 6, 8, 33, 31, 33, 33, 37, 18, 34, 31, 48, 39, 24, 8, 13, 13, 7, 34, 30, 54, 42, 39, 29, 52, 10, 10, 12, 31, 54, 10, 24, 21, 41, 24, 15, 15, 6, 48, 42, 24, 12, 42
Offset: 0

Views

Author

Philippe Guglielmetti, May 03 2018

Keywords

Comments

Numbers n for which a(n)=1 are called factorions (A014080).
Apart from factorions, only 3 cycles exist:
169 -> 363601 -> 1454 -> 169, so a(169) = a(363601) = a(1454) = 3.
871 -> 45361 -> 871, so a(871) = a(45361) = 2.
872 -> 45362 -> 872, so a(872) = a(45362) = 2.
All other n produce a chain reaching either a factorion or a cycle.

Examples

			For n = 4, 4!=24, 2!+4!=26, 2!+6!=722, 7!+2!+2!=5044, 5!+0!+4!+4!=169, 1!+6!+9!=363601, 3!+6!+3!+6!+0!+1!=1454, then 1!+4!+5!+4!=169 which already belongs to the chain, so a(4) = length of [4, 24, 26, 722, 5044, 169, 363601, 1454] = 8.
		

Crossrefs

Cf. A061602, A014080 (contains n for which a(n) = 1).

Programs

  • Mathematica
    Array[Length@ NestWhileList[Total@ Factorial@ IntegerDigits@ # &, #, UnsameQ, All, 100, -1] &, 68, 0] (* Michael De Vlieger, May 10 2018 *)
  • PARI
    f(n) = if (!n, n=1); my(d=digits(n)); sum(k=1, #d~, d[k]!);
    a(n) = {my(v = [n], vs = Set(v)); for (k=1, oo, new = f(n); if (vecsearch(vs, new), return (#vs)); v = concat(v, new); vs = Set(v); n = new;);} \\ Michel Marcus, May 18 2018
  • Python
    for n in count(0):
        l=[]
        i=n
        while i not in l:
            l.append(i)
            i=sum(map(factorial,map(int,str(i))))
        print(n,len(l))
    

A108257 Numbers k such that concatenating k and the sum of factorials of the digits of k produces a prime.

Original entry on oeis.org

1, 13, 15, 30, 31, 91, 101, 110, 128, 133, 136, 138, 144, 152, 156, 166, 175, 193, 199, 203, 215, 230, 250, 260, 280, 281, 303, 304, 306, 307, 309, 315, 320, 330, 331, 340, 361, 391, 412, 508, 520, 550, 606, 651, 661, 681, 708, 712, 717, 730, 750, 751, 780
Offset: 1

Views

Author

Jason Earls, Jun 18 2005

Keywords

Comments

The largest prime I have found pertaining to this sequence is A109016(Fibonacci(9837)) with 2064 digits (not proved prime, only Fermat and Lucas PRP).

Examples

			193 is in the sequence because 1!+9!+3! = 362887 and 193362887 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[780],PrimeQ[FromDigits[Join[IntegerDigits[#],IntegerDigits[Total[IntegerDigits[#]!]]]]]&] (* James C. McMahon, Feb 22 2024 *)
  • Python
    from math import factorial
    from sympy import isprime
    def ok(n):
        return isprime(int((s:=str(n))+str(sum(factorial(int(d)) for d in s))))
    print([k for k in range(999) if ok(k)]) # Michael S. Branicky, Feb 22 2024

A121103 a(1)=1; a(n) = the reversal of (a(n-1) + sfd(a(n-1))), where sfd(n)= sum of factorials of the digits of n.

Original entry on oeis.org

1, 2, 4, 82, 40404, 87404, 318231, 765853, 971218, 2649731, 4048103, 848804, 318969, 6775801, 3407286, 9933543, 56495601, 78106865, 70149187, 49426507, 81359794, 56013128, 99245065, 21817999, 30025922, 63988303, 26523446
Offset: 1

Views

Author

Jason Earls, Aug 12 2006

Keywords

Crossrefs

Cf. A061602.

Programs

  • Mathematica
    NestList[IntegerReverse[#+Total[IntegerDigits[#]!]]&,1,30] (* Harvey P. Dale, May 05 2023 *)

A161178 Sum of the double factorials of the digits of n.

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 2, 2, 3, 4, 9, 16, 49, 106, 385, 946, 3, 3, 4, 5, 10, 17, 50, 107, 386, 947, 4, 4, 5, 6, 11, 18, 51, 108, 387, 948, 9, 9, 10, 11, 16, 23, 56, 113, 392, 953, 16, 16, 17, 18, 23, 30, 63, 120, 399, 960, 49, 49, 50, 51, 56, 63, 96, 153, 432, 993
Offset: 0

Views

Author

Keywords

Examples

			a(24) = (2!!) + (4!!) = 2 + 8 = 10. a(35) = (3!!) + (5!!) = 3 + 15 = 18.
		

Crossrefs

Programs

  • Maple
    A161178 := proc(n) if n = 0 then 1; else add(doublefactorial(d),d=convert(n,base,10)) ; end if; end proc:
  • Mathematica
    Total[IntegerDigits[#]!!]&/@Range[0,70] (* Harvey P. Dale, Aug 28 2013 *)

A164955 Sequence obtained from Fibonacci numbers by taking the factorials of each digit and summing.

Original entry on oeis.org

1, 1, 1, 2, 6, 120, 40320, 7, 3, 30, 240, 403200, 49, 14, 10086, 722, 408240, 368041, 40466, 40346, 6600, 363626, 10083, 46202, 41790, 5283, 362896, 403946, 45369, 363029, 40354, 364353, 408250, 45632, 90843, 368788, 363040, 50548, 807128, 404792, 281, 41308
Offset: 0

Views

Author

Parthasarathy Nambi, Sep 01 2009

Keywords

Comments

There seem to be very few primes in this sequence.

Examples

			a(30) = 8!+3!+2!+0!+4!+0! = 40354 because Fibonacci(30) = 832040.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i!, i=convert((<<0|1>, <1|1>>^n)[1,2], base, 10)):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jul 09 2023
  • Mathematica
    Total[IntegerDigits[#]!]&/@Fibonacci[Range[0,40]] (* Harvey P. Dale, May 03 2011 *)

Formula

a(n) = A061602(A000045(n)). - Alois P. Heinz, Jul 09 2023

Extensions

Offset corrected and more terms from Alois P. Heinz, Jul 09 2023

A182287 If n = p*10^i + q*10^(i-1) + r*10^(i-2) + ... in decimal notation, then a(n) = p!*10^i + q!*10^(i-1) + r!*10^(i-2)+ ... .

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 11, 11, 12, 16, 34, 130, 730, 5050, 40330, 362890, 21, 21, 22, 26, 44, 140, 740, 5060, 40340, 362900, 61, 61, 62, 66, 84, 180, 780, 5100, 40380, 362940, 241, 241, 242, 246, 264, 360, 960, 5280, 40560, 363120
Offset: 0

Views

Author

Renzo Remotti, Apr 23 2012

Keywords

Examples

			a(1)=1 because 1!*10^0=1, a(15)=130 because 1!*10^1+5!*10^0=130.
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else &+[Factorial(Reverse(Intseq(n))[k])*10^(#Intseq(n)-k): k in [1..#Intseq(n)]]: n in [0..50]]; // Bruno Berselli, May 15 2012

Extensions

Offset changed from 1 to 0 by Bruno Berselli, May 16 2012

A241404 Sum of n and the sum of the factorials of its digits.

Original entry on oeis.org

2, 4, 9, 28, 125, 726, 5047, 40328, 362889, 12, 13, 15, 20, 39, 136, 737, 5058, 40339, 362900, 23, 24, 26, 31, 50, 147, 748, 5069, 40350, 362911, 37, 38, 40, 45, 64, 161, 762, 5083, 40364, 362925, 65, 66, 68, 73, 92, 189, 790, 5111, 40392, 362953, 171, 172, 174
Offset: 1

Views

Author

Vincenzo Librandi, Apr 21 2014

Keywords

Examples

			a(8) = 40328 because we have 8 + 8! = 40328.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:= n + Plus@@Factorial/@IntegerDigits[n]; Table[f[n], {n, 50}]
  • PARI
    a(n) = my(d = digits(n)); n + sum(i=1, #d, d[i]!); \\ Michel Marcus, Apr 21 2014

Formula

a(n) = n + A061602(n). - Michel Marcus, Apr 21 2014

A242571 Triangular numbers T such that sum of the factorials of digits of T is semiprime.

Original entry on oeis.org

3, 15, 28, 105, 120, 171, 210, 231, 406, 561, 741, 820, 990, 1081, 1275, 1378, 1485, 1540, 1596, 1953, 2211, 2485, 2775, 3003, 3240, 3321, 3741, 3916, 4005, 4371, 4560, 4851, 5460, 6105, 6903, 7381, 7750, 8001, 8128, 8515, 9316, 9591, 9730, 10153, 10440, 10878
Offset: 1

Views

Author

K. D. Bajpai, May 24 2014

Keywords

Comments

The n-th triangular number T(n) = n * (n+1)/2.
Intersection of A000217 and A242868.

Examples

			18*(18+1)/2 = 171 is triangular number. 1! + 7! + 1! = 5042 = 2 * 2521 is semiprime. Hence 171 is in the sequence.
28*(28+1)/2 = 406 is triangular number. 4! + 0! + 6! = 745 = 5 * 149 is semiprime. Hence 406 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242571= proc() if bigomega(add( i!,i = convert((n*(n+1)/2), base, 10))(n*(n+1)/2))=2 then RETURN (n*(n+1)/2);fi; end: seq(A242571 (),n=1..300);
  • Mathematica
    fQ[n_] := PrimeOmega[ Total[ IntegerDigits[ n (n + 1)/2]!]] == 2; s = Select[ Range@ 160, fQ@# &]; s (s + 1)/2 (* Robert G. Wilson v, May 26 2014 *)
Previous Showing 21-30 of 44 results. Next