cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A331988 Table T(n,k) read by antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}.

Original entry on oeis.org

1, 2, 2, 6, 9, 3, 24, 64, 20, 4, 120, 625, 216, 36, 5, 720, 7776, 3136, 512, 56, 6, 5040, 117649, 59049, 10000, 1000, 81, 7, 40320, 2097152, 1331000, 248832, 24336, 1728, 110, 8, 362880, 43046721, 35831808, 7529536, 759375, 50625, 2744, 144, 9, 3628800, 1000000000, 1097199376, 268435456, 28652616, 1889568, 93636, 4096, 182, 10
Offset: 1

Views

Author

Chai Wah Wu, Feb 23 2020

Keywords

Comments

A dual sequence to A260355. See arXiv link for sets of permutations that achieve the value of T(n,k). The minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] is equal to n!*k^n.

Examples

			T(n,k)
   k    1    2     3      4      5      6      7      8      9     10     11     12
  ---------------------------------------------------------------------------------
n  1|   1    2     3      4      5      6      7      8      9     10     11     12
   2|   2    9    20     36     56     81    110    144    182    225    272    324
   3|   6   64   216    512   1000   1728   2744   4096   5832   8000  10648  13824
   4|  24  625  3136  10000  24336  50625  93636 160000 256036 390625 571536 810000
		

Crossrefs

Programs

  • Python
    from itertools import permutations, combinations_with_replacement
    def A331988(n,k): # compute T(n,k)
        if k == 1:
            count = 1
            for i in range(1,n):
                count *= i+1
            return count
        ntuple, count = tuple(range(1,n+1)), 0
        for s in combinations_with_replacement(permutations(ntuple,n),k-2):
            t = list(ntuple)
            for d in s:
                for i in range(n):
                    t[i] += d[i]
            t.sort()
            w = 1
            for i in range(n):
                w *= (n-i)+t[i]
            if w > count:
                count = w
        return count

Formula

T(n,n) = (n*(n+1)/2)^n = A061718(n).
T(n,k) <= (k(n+1)/2)^n.
T(1,k) = k = A000027(k).
T(n,1) = n! = A000142(n).
T(2,2m) = 9m^2 = A016766(m).
T(2,2m+1) = (3m+1)*(3m+2) = A001504(m).
T(n,2) = (n+1)^n = A000169(n+1).
T(3,k) = 8k^3 = A016743(k) for k > 1.
If n divides k then T(n,k) = (k*(n+1)/2)^n.
If k is even then T(n,k) = (k*(n+1)/2)^n.
If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n.
If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2).

A350149 Triangle read by rows: T(n, k) = n^(n-k)*k!.

Original entry on oeis.org

1, 1, 1, 4, 2, 2, 27, 9, 6, 6, 256, 64, 32, 24, 24, 3125, 625, 250, 150, 120, 120, 46656, 7776, 2592, 1296, 864, 720, 720, 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320
Offset: 0

Views

Author

Robert B Fowler, Dec 27 2021

Keywords

Comments

T(n,k) are the denominators in a double summation power series for the definite integral of x^x. First expand x^x = exp(x*log(x)) = Sum_{n>=0} (x*log(x))^n/n!, then integrate each of the terms to get the double summation for F(x) = Integral_{t=0..x} t^t = Sum_{n>=1} (Sum_{k=0..n-1} (-1)^(n+k+1)*x^n*(log(x))^k/T(n,k)).
This is a definite integral, because lim {x->0} F(x) = 0.
The value of F(1) = 0.78343... = A083648 is known humorously as the Sophomore's Dream (see Borwein et al.).

Examples

			Triangle T(n,k) begins:
--------------------------------------------------------------------------
n/k         0        1       2       3      4      5      6      7      8
--------------------------------------------------------------------------
0  |        1,
1  |        1,       1,
2  |        4,       2,      2,
3  |       27,       9,      6,      6,
4  |      256,      64,     32,     24,    24,
5  |     3125,     625,    250,    150,   120,   120,
6  |    46656,    7776,   2592,   1296,   864,   720,   720,
7  |   823543,  117649,  33614,  14406,  8232,  5880,  5040,  5040,
8  | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320.
...
		

References

  • Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.

Crossrefs

Cf. A000312 (first column), A000169 (2nd column), A003308 (3rd column excluding first term), A000142 (main diagonal), A000142 (2nd diagonal excluding first term), A112541 (row sums).
Values of the integral: A083648, A073009.

Programs

  • Magma
    A350149:= func< n,k | n^(n-k)*Factorial(k) >;
    [A350149(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
    
  • Maple
    T := (n, k) -> n^(n - k)*k!:
    seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
  • Mathematica
    T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0,12}, {k,0,n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
  • SageMath
    def A350149(n,k): return n^(n-k)*factorial(k)
    flatten([[A350149(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022

Formula

T(n, 0) = A000312(n).
T(n, 1) = A000169(n).
T(n, 2) = A003308(n), n >= 2.
Sum_{k=0..n} T(n, k) = A112541(n).
T(n, n) = A000142(n).
T(n, n-1) = A000142(n), n >= 1.
T(n,k) = A061711(n) * (n+1) / A350297(n+1,k). - Robert B Fowler, Jan 11 2022

A350297 Triangle read by rows: T(n,k) = n!*(n-1)^k/k!.

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 6, 12, 12, 8, 24, 72, 108, 108, 81, 120, 480, 960, 1280, 1280, 1024, 720, 3600, 9000, 15000, 18750, 18750, 15625, 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936, 40320, 282240, 987840, 2304960, 4033680, 5647152, 6588344, 6588344, 5764801
Offset: 0

Views

Author

Robert B Fowler, Dec 23 2021

Keywords

Comments

Rows n >= 2 are coefficients in a double summation power series for the integral of x^(1/x), and the integral of its inverse function y^(y^(y^(y^(...)))). See A350358.

Examples

			Triangle T(n,k) begins:
  -----------------------------------------------------------------
   n\k     0      1      2       3       4       5       6       7
  -----------------------------------------------------------------
   0  |    1,
   1  |    1,     0,
   2  |    2,     2,     1,
   3  |    6,    12,    12,      8,
   4  |   24,    72,   108,    108,     81,
   5  |  120,   480,   960,   1280,   1280,   1024,
   6  |  720,  3600,  9000,  15000,  18750,  18750,  15625,
   7  | 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936.
  ...
		

Crossrefs

Cf. A000142 (first column), A062119 (second column), A065440 (main diagonal), A055897 (subdiagonal), A217701 (row sums).

Programs

  • Maple
    T := (n, k) -> (n!/k!)*(n - 1)^k:
    seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 24 2021
  • Mathematica
    T[1, 0] := 1; T[n_, k_] := n!*(n - 1)^k/k!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 24 2021 *)

Formula

T(n, k) = binomial(n, k)*A350269(n, k). - Peter Luschny, Dec 25 2021
T(n+1, k) = A061711(n) * (n+1) / A350149(n, k). - Robert B Fowler, Jan 11 2022

A292784 a(n) = n! * [x^n] 1/sqrt(1 - 2*n*x).

Original entry on oeis.org

1, 1, 12, 405, 26880, 2953125, 484989120, 111289483305, 34007836262400, 13350287284158825, 6547290750000000000, 3922838769902739011325, 2819575386162274605465600, 2394486245934541921935898125, 2371947271643716575046318080000, 2710687260280640086154937744140625, 3539907755812512418187309922385920000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Main diagonal of A292783.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/Sqrt[1 - 2 n x], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-i n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n^n (2 n - 1)!!, {n, 1, 16}]]

Formula

a(n) = [x^n] 1/(1 - n*x/(1 - 2*n*x/(1 - 3*n*x/(1 - 4*n*x/(1 - 5*n*x/(1 - ...)))))), a continued fraction.
a(n) = A000312(n)*A001147(n).

A330497 a(n) = n! * Sum_{k=0..n} (-1)^k * binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 0, 1, 26, 1089, 70124, 6495985, 821315214, 136115947009, 28651724077976, 7470040450004001, 2363470644596843330, 892244303052345224641, 396227360441775922668036, 204487588996059177697597969, 121370399839482643287189048374
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[(-1)^k*Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[(-1)^k Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, 1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[-x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = n! * [x^n] exp(-x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselJ(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A336765 Decimal expansion of Sum_{n>=1} 1/(n!*n^n).

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 8, 2, 9, 6, 6, 0, 0, 6, 2, 6, 3, 7, 1, 5, 0, 8, 8, 5, 2, 7, 8, 6, 9, 2, 8, 3, 4, 9, 5, 1, 3, 0, 6, 8, 1, 0, 6, 9, 5, 0, 9, 0, 2, 5, 8, 3, 9, 8, 8, 2, 1, 7, 1, 9, 5, 2, 5, 6, 0, 2, 7, 0, 9, 8, 6, 8, 8, 3, 0, 9, 2, 6, 5, 6, 8, 7, 9, 6, 0, 2, 9, 1, 8, 3, 6, 8, 6, 8, 9, 5, 5, 5, 8, 2, 5, 7, 5, 7, 7
Offset: 1

Views

Author

Mario Cortés, Aug 03 2020

Keywords

Examples

			1.13133829660062637150885278692834951306810695090...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(n!*n^n), n=1..infinity), 106);  # Alois P. Heinz, Nov 20 2020
  • Mathematica
    RealDigits[N[Sum[1/(n!*n^n), {n, 1, Infinity}], 800]]
  • PARI
    suminf(n=1, 1/(n!*n^n)) \\ Michel Marcus, Aug 20 2020

Formula

Equals Sum_{n>=1} 1/A061711(n).

Extensions

Missing first digit inserted by Alois P. Heinz, Nov 20 2020

A372311 Triangle read by rows: T(n, k) = n^k * Sum_{j=0..n} binomial(n - j, n - k) * Eulerian1(n, j).

Original entry on oeis.org

1, 1, 1, 1, 6, 8, 1, 21, 108, 162, 1, 60, 800, 3840, 6144, 1, 155, 4500, 48750, 225000, 375000, 1, 378, 21672, 453600, 4354560, 19595520, 33592320, 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720
Offset: 0

Views

Author

Peter Luschny, Apr 26 2024

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1,   1;
  [2] 1,   6,     8;
  [3] 1,  21,   108,     162;
  [4] 1,  60,   800,    3840,     6144;
  [5] 1, 155,  4500,   48750,   225000,    375000;
  [6] 1, 378, 21672,  453600,  4354560,  19595520,   33592320;
  [7] 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720;
		

Crossrefs

Cf. A061711 (main diagonal), A066524 (column 1), A372312 (row sums).
Cf. A163626, A173018 (eulerian1).

Programs

  • Maple
    S := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j = 0..n):
    row := n -> local k; seq(S(n, k) * n^k, k = 0..n):
    seq(row(n), n = 0..8);
  • SageMath
    def A372311_row(n) :
        x = polygen(ZZ, 'x')
        A = []
        for m in range(0, n + 1, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return [n^k*c for k, c in enumerate(A[0])]
    for n in (0..7) : print(A372311_row(n))

A088055 a(n) = n!*n^n - ((n^(n+1)-1)/(n-1) - 1) for n>1 with a(1)=0.

Original entry on oeis.org

0, 2, 123, 5804, 371095, 33536334, 4149695921, 676438175160, 140586711200271, 36287988888888890, 11388728579602327129, 4270826370748686175140, 1886009588224061851054127, 968725766842917544760889030
Offset: 1

Views

Author

Amarnath Murthy, Sep 20 2003

Keywords

Comments

Original definition: a(n) = G(n) - A(n), where G(n) = Sum of the first n terms of a geometric progression with first term n and common ratio n. A(n) = Product of first n terms of an arithmetic progression with first term n and common difference n.

Crossrefs

Programs

  • Maple
    seq(`if`(n=1, 0, n!*n^n - ((n^(n+1)-1)/(n-1) - 1)),n=1..16); # Georg Fischer, Dec 09 2022
  • PARI
    a(n) = if (n==1, 0, n!*n^n - ((n^(n+1)-1)/(n-1) - 1)); \\ Michel Marcus, Dec 10 2022

Formula

a(n) = A061711(n) - A031972(n) for n>1 with a(1)=0.

Extensions

Corrected and extended by David Wasserman, Jun 27 2005
Edited by M. F. Hasler, Feb 12 2013
Formula negated by Georg Fischer, Dec 09 2022

A153188 Triangle read by rows: T(n,k) = n^k * k!.

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 1, 3, 18, 162, 1, 4, 32, 384, 6144, 1, 5, 50, 750, 15000, 375000, 1, 6, 72, 1296, 31104, 933120, 33592320, 1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 1, 8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120
Offset: 0

Views

Author

Roger L. Bagula, Dec 20 2008

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,  8;
  1, 3, 18,  162;
  1, 4, 32,  384,  6144;
  1, 5, 50,  750, 15000,  375000;
  1, 6, 72, 1296, 31104,  933120, 33592320;
  1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720;
  ...
		

Crossrefs

Main diagonal gives A061711.
Row sums give A368561.

Programs

  • Mathematica
    t[n_, m_] =Product[m*k, {k, 1, n}];
    Table[Table[t[n, m], {n, 1, m}], {m, 1, 10}];
    Flatten[%]

Formula

T(n,k) = Product_{j=1..n} n*j.

Extensions

Formula corrected by Georg Fischer, Oct 24 2024

A300519 Convolution of n! and n^n.

Original entry on oeis.org

1, 2, 7, 39, 321, 3603, 51391, 884873, 17770445, 406673247, 10431884283, 296262164637, 9224841015745, 312441152401067, 11434829066996087, 449675059390576257, 18908960744072894325, 846638474386244188311, 40213487658138717885907, 2019543479160709325145893
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k == 0, 1, k^k] * (n-k)!, {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} k^k * (n-k)!.
a(n) ~ n^n * (1 + exp(-1)/n).
Previous Showing 11-20 of 22 results. Next