cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A172202 Number of ways to place 3 nonattacking kings on a 3 X n board.

Original entry on oeis.org

0, 0, 8, 34, 105, 248, 490, 858, 1379, 2080, 2988, 4130, 5533, 7224, 9230, 11578, 14295, 17408, 20944, 24930, 29393, 34360, 39858, 45914, 52555, 59808, 67700, 76258, 85509, 95480, 106198, 117690, 129983, 143104, 157080, 171938, 187705
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(n-2)*(9*n^2-45*n+70)/2: n in [2..50]]; // G. C. Greubel, Apr 29 2022
    
  • Mathematica
    CoefficientList[Series[x^2*(8+2*x+17*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{4,-6,4,-1},{0,0,8,34,105},40] (* Harvey P. Dale, Oct 07 2023 *)
  • SageMath
    [(1/8)*(n-2)*(9*(2*n-5)^2+55) +17*bool(n==1) for n in (1..50)] # G. C. Greubel, Apr 29 2022

Formula

a(n) = (n-2)*(9*n^2 - 45*n + 70)/2, n>=2.
G.f.: x^3*(8+2*x+17*x^2)/(1-x)^4. - Vaclav Kotesovec, Mar 24 2010
E.g.f.: 70 + 17*x + (1/2)*(-140 + 106*x - 36*x^2 + 9*x^3)*exp(x). - G. C. Greubel, Apr 29 2022

Extensions

More terms from Vincenzo Librandi, May 27 2013

A194788 Number of ways to place 7 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 242, 51504, 2484382, 44601420, 450193818, 3112919712, 16471667554, 71393226972, 265069706646, 869583076752, 2577681275622, 7020477731884, 17794428237522, 42397762374912, 95726217156906, 206149749502012, 425731784898894, 846919172059632
Offset: 1

Views

Author

Andrew Woods, Sep 02 2011

Keywords

Crossrefs

Formula

a(n) = (n^14 - 189n^12 + 252n^11 + 15211n^10 - 38640n^9 - 649215n^8 + 2408700n^7 + 14771764n^6 - 75856200n^5 - 144099396n^4 + 1198867488n^3 - 255900576n^2 - 7543005120n + 10617929280)/5040, n>=6. - Andrew Woods, Sep 02 2011
G.f.: 2*x^5*(1930*x^15 - 20052*x^14 + 87663*x^13 - 265681*x^12 + 816798*x^11 - 2117376*x^10 + 2865281*x^9 + 557737*x^8 - 6577818*x^7 + 3848604*x^6 + 8828017*x^5 - 9464319*x^4 - 6316750*x^3 - 868616*x^2 - 23937*x - 121)/ (x-1)^15. - Vaclav Kotesovec, Nov 06 2011

A172207 Number of ways to place 3 nonattacking bishops on a 3 X n board.

Original entry on oeis.org

1, 6, 26, 86, 211, 426, 758, 1234, 1881, 2726, 3796, 5118, 6719, 8626, 10866, 13466, 16453, 19854, 23696, 28006, 32811, 38138, 44014, 50466, 57521, 65206, 73548, 82574, 92311, 102786, 114026, 126058, 138909, 152606, 167176, 182646, 199043, 216394, 234726, 254066
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^6 + 14 x^3 + 8 x^2 + 2 x + 1) / (x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (9n^3 - 45n^2 + 106n - 108)/2, n>=4.
G.f.: x*(2*x^6+14*x^3+8*x^2+2*x+1)/(x-1)^4. - Vaclav Kotesovec, Mar 25 2010

A201369 Number of ways to place 8 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 27, 21792, 3324193, 119138166, 1979541332, 20142680752, 145977165234, 824771174978, 3850985758339, 15461577137802, 54912339921707, 176153338628674, 518569625849418, 1418340918023792, 3639736652346172, 8833161922947702, 20405252721413369
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 30 2011

Keywords

Crossrefs

Formula

Explicit formula (Vaclav Kotesovec, after values computed by Andrew Woods, Nov 30 2011): (n^16 - 252*n^14 + 336*n^13 + 27762*n^12 - 70896*n^11 - 1699656*n^10 + 6330240*n^9 + 60677169*n^8 - 304864560*n^7 - 1181816748*n^6 + 8314366704*n^5 + 8495481308*n^4 - 121101870624*n^3 + 74007948336*n^2 + 730891869120*n - 1180990460160)/40320, n>=7.
G.f.: -x^5*(14882*x^18 - 180784*x^17 + 1061244*x^16 - 4500406*x^15 + 15038864*x^14 - 34328850*x^13 + 40903004*x^12 - 8667835*x^11 + 23857551*x^10 - 260744627*x^9 + 545801251*x^8 - 276255996*x^7 - 467674682*x^6 + 484515328*x^5 + 391528458*x^4 + 65572237*x^3 + 2957401*x^2 + 21333*x + 27)/(x-1)^17.

A194651 Number of ways to place 3 nonattacking kings on an n X n cylindrical chessboard.

Original entry on oeis.org

0, 0, 0, 88, 785, 3528, 11151, 28560, 63513, 127520, 236863, 413736, 687505, 1096088, 1687455, 2521248, 3670521, 5223600, 7286063, 9982840, 13460433, 17889256, 23466095, 30416688, 38998425, 49503168, 62260191, 77639240, 96053713, 117963960, 143880703
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x^3*(15*x^6 - 89*x^5 + 196*x^4 - 140*x^3 - 119*x^2 + 169*x + 88)/(x - 1)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Dec 27 2023 *)

Formula

a(n) = 1/6*n*(n^5 - 27*n^3 + 18*n^2 + 194*n - 228), n>=4.
G.f.: -x^4*(15*x^6 - 89*x^5 + 196*x^4 - 140*x^3 - 119*x^2 + 169*x + 88)/(x-1)^7.

A201771 Number of ways to place 9 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 1, 3600, 2882737, 229095676, 6655170642, 103395053720, 1051588999820, 7878155295948, 46838274976147, 232322652402464, 995789500001315, 3784235129731708, 12999197522073908, 40969826999523768, 119876498636101786, 328726265508168780, 851369417500529061
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 04 2011

Keywords

Crossrefs

Formula

Explicit formula (Vaclav Kotesovec, after values computed by Andrew Woods, Dec 04 2011): n^18/362880 - n^16/1120 + n^15/840 + 1559*n^14/12096 - 119*n^13/360 - 7681*n^12/720 + 479*n^11/12 + 9383677*n^10/17280 - 195031*n^9/72 - 24176483*n^8/1440 + 4447749*n^7/40 + 5032857271*n^6/18144 - 495178813*n^5/180 - 2551293629*n^4/2520 + 1588223225*n^3/42 - 11469403819*n^2/315 - 664490248*n/3 + 405670140, n>=8.
G.f.: x^5*(54764*x^21 - 805588*x^20 + 6061268*x^19 - 31485512*x^18 + 117971558*x^17 - 312791986*x^16 + 620038858*x^15 - 1193322246*x^14 + 2685590901*x^13 - 4918483903*x^12 + 3824558880*x^11 + 5110355848*x^10 - 13987162841*x^9 + 5213745395*x^8 + 15789867458*x^7 - 14255103822*x^6 - 13342741937*x^5 - 2791816301*x^4 - 174938304*x^3 - 2814508*x^2 - 3581*x - 1)/(x-1)^19.

A220467 Number of ways to place 10 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1601292, 314949564, 17143061738, 423677826986, 6210264633994, 62831788827614, 481992723228798, 2982908737810114, 15548436178142582, 70420082692285198, 283631426534134042, 1034163399690010346, 3461457325296584554, 10754832937513676198
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 15 2012

Keywords

Crossrefs

Cf. A061995 (2 kings), A061996 (3 kings), A061997 (4 kings).
Cf. A061998 (5 kings), A172158 (6 kings), A194788 (7 kings).
Cf. A201369 (8 kings), A201771 (9 kings).
Column k=10 of A193580.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21, {x, 0, 20}], x]]

Formula

a(n) = n^20/3628800 - n^18/8960 + n^17/6720 + 353*n^16/17280 - 53*n^15/1008 - 29467*n^14/13440 + 11867*n^13/1440 + 25901053*n^12/172800 - 107495*n^11/144 - 8467959*n^10/1280 + 122792641*n^9/2880 + 32499630031*n^8/181440 - 112903333*n^7/72 - 16042907329*n^6/6720 + 36445613711*n^5/1008 - 1784819159*n^4/300 - 9997453897*n^3/21 + 85979117831*n^2/140 + 13635070421*n/5 - 5609601346, for n>=9.
G.f.: -2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21.

A226997 Irregular triangle read by rows: T(n,k) is the number of distinct tilings by squares of an n X n square lattice that contain k nodes unconnected to any of their neighbors.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 0, 1, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 25, 228, 964, 2003, 2178, 1842, 1626, 725, 290, 376, 184, 140, 76, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 36, 520, 3920, 16859, 42944, 67312
Offset: 1

Views

Author

Keywords

Comments

The n-th row contains (n-1)^2 + 1 elements.

Examples

			For n = 3, there are 4 tilings that contain 1 isolated node, so T(3,1) = 4. A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 4 tilings are:
1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
1 0 1 1    1 1 0 1    1 1 1 1    1 1 1 1
1 1 1 1    1 1 1 1    1 0 1 1    1 1 0 1
1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
The irregular triangle begins:
\ k 0     1     2     3     4     5     6     7     8     9  ...
n
1   1
2   1     1
3   1     4     0     0     1
4   1     9    16     8     5     0     0     0     0     1
5   1    16    78   140    88    44    68    32     0     4  ...
6   1    25   228   964  2003  2178  1842  1626   725   290  ...
7   1    36   520  3920 16859 42944 67312 72980 69741 62952  ...
		

Crossrefs

Cf. A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+x^((i-k)^2)
              *b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; expand(s)
          fi
        end:
    T:= n-> (l-> seq(coeff(l,x,i), i=0..degree(l)))(b(n, [0$n])):
    seq(T(n), n=1..9);  # Alois P. Heinz, Jun 27 2013

Formula

Sum_{k=0..(n-1)^2} T(n,k) = A045846(n).
From Christopher Hunt Gribble, Jul 02 2013: (Start)
It appears that:
T(n,1) = (n-1)^2, n>1 = A000290(n-1).
T(n,2) = (n-2)(n-3)(n^2+n-4)/2, n>2 = A061995(n-1).
T(n,3) = (n-2)(n-3)(n^4-n^3-23n^2+15n+140)/6, n>2 = A061996(n-1).
T(n,4) = (n^8 - 8n^7 - 26*n^6 + 340*n^5 - 105*n^4 - 4708*n^3 + 6814*n^2 + 20852*n - 40248)/24, n>3. (End)
Previous Showing 11-18 of 18 results.