cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A230094 Numbers that can be expressed as (m + sum of digits of m) in exactly two ways.

Original entry on oeis.org

101, 103, 105, 107, 109, 111, 113, 115, 117, 202, 204, 206, 208, 210, 212, 214, 216, 218, 303, 305, 307, 309, 311, 313, 315, 317, 319, 404, 406, 408, 410, 412, 414, 416, 418, 420, 505, 507, 509, 511, 513, 515, 517, 519, 521, 606, 608, 610, 612, 614, 616, 618, 620, 622, 707, 709, 711, 713, 715, 717, 719, 721, 723, 808
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2013, Oct 24 2013

Keywords

Comments

Numbers n such that A230093(n) = 2.
The sequence "Numbers n such that A230093(n) = 3" starts at 10^13+1 (see A230092). This implies that changing the definition of A230094 to "Numbers n such that A230093(n) >= 2" (the so-called "junction numbers") would produce a sequence which agrees with A230094 up to 10^13.
Makowski shows that the sequence of junction numbers is infinite.

Examples

			a(1) = 101 = 91 + (9+1) = 100 + (1+0+0);
a(10) = 202 = 191 + (1+9+1) = 200 + (2+0+0);
a(100) = 1106 = 1093 + (1+0+9+3) = 1102 + (1+1+0+2);
a(1000) = 10312 = 10295 + (1+0+2+9+5) = 10304 + (1+0+3+0+4).
		

References

  • Joshi, V. S. A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student 39 (1971), 327--328 (1972). MR0330032 (48 #8371)
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Makowski, Andrzej. On Kaprekar's "junction numbers''. Math. Student 34 1966 77 (1967). MR0223292 (36 #6340)
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)

Crossrefs

Programs

  • Haskell
    a230094 n = a230094_list !! (n-1)
    a230094_list = filter ((== 2) . a230093) [0..]
    -- Reinhard Zumkeller, Oct 11 2013
  • Maple
    For Maple code see A230093.
  • Mathematica
    Position[#, 2][[All, 1]] - 1 &@ Sort[Join[#2, Map[{#, 0} &, Complement[Range[#1], #2[[All, 1]]]] ] ][[All, -1]] & @@ {#, Tally@ Array[# + Total@ IntegerDigits@ # &, # + 1, 0]} &[10^3] (* Michael De Vlieger, Oct 28 2020, after Harvey P. Dale at A230093 *)

A258881 a(n) = n + the sum of the squared digits of n.

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 24, 26, 30, 36, 44, 54, 66, 80, 96, 114, 39, 41, 45, 51, 59, 69, 81, 95, 111, 129, 56, 58, 62, 68, 76, 86, 98, 112, 128, 146, 75, 77, 81, 87, 95, 105, 117, 131, 147, 165, 96, 98, 102
Offset: 0

Views

Author

M. F. Hasler, Jul 19 2015

Keywords

Crossrefs

Cf. A003132, A062028, A259391, A259567, A033936, A076161 (indices of primes), A329179 (indices of squares).

Programs

  • Mathematica
    Total[Flatten@ {#, IntegerDigits[#]^2}] & /@ Range[0, 61] (* Michael De Vlieger, Jul 20 2015 *)
    Table[n+Total[IntegerDigits[n]^2],{n,0,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    A258881(n)=n+norml2(digits(n))
    
  • Python
    def ssd(n): return sum(int(d)**2 for d in str(n))
    def a(n): return n + ssd(n)
    print([a(n) for n in range(63)]) # Michael S. Branicky, Jan 30 2021

A048521 Primes expressible as the sum of an integer plus its digit sum.

Original entry on oeis.org

2, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(24) = prime 113 which is 106 + (1+0+6) (or 97 + (9+7)).
		

Crossrefs

Programs

  • Haskell
    a048521 n = a048521_list !! (n-1)
    a048521_list = map a000040 $ filter ((> 0) . a107740) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
  • Mathematica
    t={};Do[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
    Union[Select[Table[n+Total[IntegerDigits[n]],{n,400}],PrimeQ]] (* Harvey P. Dale, Jul 14 2014 *)

Formula

A107740(A049084(a(n))) > 0.

Extensions

Formula and also offset corrected by Reinhard Zumkeller, Sep 27 2014

A064806 a(n) = n + digital root of n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 13, 15, 17, 19, 21, 23, 25, 27, 20, 22, 24, 26, 28, 30, 32, 34, 36, 29, 31, 33, 35, 37, 39, 41, 43, 45, 38, 40, 42, 44, 46, 48, 50, 52, 54, 47, 49, 51, 53, 55, 57, 59, 61, 63, 56, 58, 60, 62, 64, 66, 68, 70, 72, 65, 67, 69, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2001

Keywords

Crossrefs

Cf. A010888 (digital root of n), A062028 (sum of digits of n).

Programs

  • Haskell
    a064806 n = n + a010888 n  -- Reinhard Zumkeller, Apr 13 2013
  • Maple
    A064806 := proc(n) return n+1 + ((n-1) mod 9): end: seq(A064806(n), n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[n+Mod[n-1,9]+1,{n,70}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{2,4,6,8,10,12,14,16,18,11},70] (* Harvey P. Dale, Nov 19 2022 *)
  • PARI
    a(n) = { n + (n - 1)%9 + 1 } \\ Harry J. Smith, Sep 26 2009
    

Formula

a(n) = n + A010888(n).
G.f.: -x*(9*x^9-2*x^8-2*x^7-2*x^6-2*x^5-2*x^4-2*x^3-2*x^2-2*x-2) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 05 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 263/315 + 8*Pi/(9*sqrt(3)) - log(2)/9 + (2*Pi/9)*(sec(Pi/18) - 4*cos(Pi/18)). - Amiram Eldar, May 12 2025

A066564 Numbers that when incremented by the sum of their digits produce a square.

Original entry on oeis.org

0, 2, 8, 17, 27, 38, 72, 86, 135, 161, 179, 216, 245, 275, 315, 347, 432, 467, 521, 558, 614, 662, 720, 770, 830, 882, 944, 998, 1016, 1080, 1145, 1220, 1278, 1355, 1433, 1512, 1583, 1664, 1746, 1829, 1922, 1998, 2016, 2111, 2189, 2286, 2384, 2483, 2583
Offset: 1

Views

Author

Amarnath Murthy, Dec 18 2001

Keywords

Examples

			179 is in the sequence because 179 + sum of digits of 179 = 179 + 17 = 196 which is a perfect square. - _Indranil Ghosh_, Feb 10 2017
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3*10^3] | IsSquare(&+Intseq(n)+n)]; // Vincenzo Librandi, Jan 15 2016
  • Mathematica
    Select[Range[0,2600],IntegerQ[Sqrt[#+Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, May 19 2012 *)
  • PARI
    digitsum(n) = local(s, d); s = 0; while(n>0, d = divrem(n, 10); n = d[1]; s = s+d[2]); s
    a066564(m) = local(n); for(n = 0, m, if(issquare(n+digitsum(n)), print1(n, ", ")))
    a066564(10000)
    
  • PARI
    isok(n) = issquare(n + sumdigits(n)); \\ Michel Marcus, Jan 15 2016
    

Extensions

More terms from Jason Earls, Dec 20 2001

A108773 Concatenation of n and the sum of the digits of n.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 112, 123, 134, 145, 156, 167, 178, 189, 1910, 202, 213, 224, 235, 246, 257, 268, 279, 2810, 2911, 303, 314, 325, 336, 347, 358, 369, 3710, 3811, 3912, 404, 415, 426, 437, 448, 459, 4610, 4711, 4812, 4913, 505, 516, 527
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2005

Keywords

Comments

A136614(n) = A007953(a(n)) = A007953(A136613(n)). - Reinhard Zumkeller, Jan 13 2008

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[ Join[ IntegerDigits[n], IntegerDigits[Plus @@ IntegerDigits[n]]]]; Table[ f[n], {n, 0, 52}] (* Robert G. Wilson v, Jun 28 2005 *)
  • PARI
    a(n) = eval(concat(Str(n), Str(sumdigits(n)))); \\ Michel Marcus, Nov 12 2023

Extensions

More terms from Robert G. Wilson v, Jun 28 2005

A225793 Numbers n that can be uniquely expressed as (m + sum of digits of m) for some m.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77
Offset: 1

Views

Author

Jayanta Basu, Jul 27 2013

Keywords

Comments

Subset of A176995; first member in A176995 that is not here is 101, next is 103 (cf. A230094).
A230093(a(n)) = 1. - Reinhard Zumkeller, Oct 11 2013

Examples

			100 is a member as 100 = 86 + sum of digits of (86). 101 is not a member since both 91 and 100 generate 101. Again 103 is not a member as 92 and 101 generate 103.
		

References

  • Joshi, V. S. A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student 39 (1971), 327--328 (1972). MR0330032 (48 #8371)
  • Makowski, Andrzej. On Kaprekar's "junction numbers''. Math. Student 34 1966 77 (1967). MR0223292 (36 #6340)
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)

Crossrefs

Programs

  • Haskell
    a225793 n = a225793_list !! (n-1)
    a225793_list = filter ((== 1) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013
  • Maple
    For Maple code see A230093. - N. J. A. Sloane, Oct 11 2013
  • Mathematica
    co[n_] := Count[Range[n - 1], _?(# + Total[IntegerDigits[#]] == n &)]; Select[Range[100], co[#] == 1 &]
    Select[Tally[Table[m+Total[IntegerDigits[m]],{m,100}]],#[[2]]==1&][[All, 1]]// Sort (* Harvey P. Dale, Aug 23 2017 *)

A065073 a(n) = prime(n) + (sum of digits of prime(n)).

Original entry on oeis.org

4, 6, 10, 14, 13, 17, 25, 29, 28, 40, 35, 47, 46, 50, 58, 61, 73, 68, 80, 79, 83, 95, 94, 106, 113, 103, 107, 115, 119, 118, 137, 136, 148, 152, 163, 158, 170, 173, 181, 184, 196, 191, 202, 206, 214, 218, 215, 230, 238, 242, 241, 253, 248, 259, 271, 274, 286
Offset: 1

Views

Author

Bodo Zinser, Nov 09 2001

Keywords

Examples

			a(5) = 13 because p(5) = 11 and 11 + (1 + 1) = 13.
		

Crossrefs

Programs

  • Haskell
    a065073 = a062028 . a000040  -- Reinhard Zumkeller, Sep 27 2014
    
  • Magma
    [NthPrime(n) + &+Intseq(NthPrime(n), 10): n in [1..80]]; // Vincenzo Librandi, Nov 07 2018
  • Mathematica
    Table[ Prime[n] + Apply[ Plus, IntegerDigits[ Prime[n]]], {n, 1, 75} ]
  • PARI
    forprime(p=2,300,print1(p+sumdigits(p),",")) \\ Edited by M. F. Hasler, Nov 06 2018
    
  • PARI
    A065073(n)=sumdigits(n=prime(n))+n \\ M. F. Hasler, Nov 06 2018
    

Formula

a(n) = A062028(A000040(n)). - M. F. Hasler, Nov 06 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Nov 13 2001

A161351 a(n) = n + sum_of_digits(n) + product_of_digits(n).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 66, 74, 82, 90, 98, 106, 114, 122, 130
Offset: 1

Views

Author

Claudio Meller, Jun 07 2009

Keywords

Comments

a(10) = 10 + (1 + 0) + (1*0) = 11 ; a(19) = 19 + (9 + 1) + (9*1) = 38.

Crossrefs

Programs

  • Mathematica
    Table[n+Total[IntegerDigits[n]]+Times@@IntegerDigits[n],{n,70}] (* Harvey P. Dale, Jun 07 2020 *)
  • PARI
    a(n) = my(d=digits(n)); n + vecsum(d) + vecprod(d); \\ Michel Marcus, Nov 12 2022
    
  • Python
    from math import prod
    def a(n): d = list(map(int, str(n))); return n + sum(d) + prod(d)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Nov 20 2022

Formula

a(n) = n + A007953(n) + A007954(n). - Michel Marcus, Nov 12 2022
If n contains a digit 0 (A011540), then a(n) = A062028(n). - Bernard Schott, Nov 12 2022

A171671 Square numbers not of form m + sum of digits of m.

Original entry on oeis.org

1, 9, 64, 121, 400, 5776, 6889, 7396, 8836, 9409, 10816, 12100, 17689, 18769, 27556, 29929, 30976, 33856, 34969, 37636, 49729, 65536, 69169, 69696, 70756, 75076, 75625, 76729, 80656, 110224, 124609, 126736, 132496, 134689, 156816, 162409
Offset: 1

Views

Author

Zak Seidov, Dec 15 2009

Keywords

Comments

We may call these numbers the self or Colombian squares. Subsequence of A003052. There are 446 such self squares < 2*10^7, 218 odd and 228 even.
Kaprekar (1963) introduced these numbers and called them self-square numbers. - N. J. A. Sloane, Oct 30 2014

References

  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.

Crossrefs

Intersection of A000290 and A003052 (self or Colombian numbers).
Cf. A171672 (m^2 are self numbers), A062028 (a(n) = n + sum of the digits of n), A171673 (n and n^2 are self numbers), A382166.

Programs

  • Mathematica
    A062028=Table[n+Total[IntegerDigits[n]],{n,0,20000000}];
    se=Select[Complement[Range[0,20000000],A062028],IntegerQ[Sqrt[ # ]]&]

Formula

a(n) = A171672(n)^2. - Amiram Eldar, Mar 26 2025

Extensions

Changed the word "safe" in this entry to "self". - N. J. A. Sloane, Feb 26 2017
Previous Showing 31-40 of 80 results. Next