cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A062678 Composite and every divisor (except 1) contains the digit 8.

Original entry on oeis.org

6889, 7387, 23489, 25187, 31789, 32287, 34087, 48721, 50861, 56689, 60787, 68143, 68309, 68641, 68807, 73289, 73781, 76807, 78053, 78409, 78587, 78943, 78961, 80089, 81589, 87487, 88147, 98023, 98521, 106489, 106987, 108389, 110087
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			7387 has divisors 83, 89 and 7387, each of which contains the digit 8.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..120000]|  not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 8 in Intseq(d)}];// Marius A. Burtea, Nov 07 2019
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 110100], !PrimeQ[#] && fQ[#, 8] &] (* Robert G. Wilson v, Jun 11 2014 *)
    dc8Q[n_]:=AllTrue[Rest[Divisors[n]],DigitCount[#,10,8]>0&]; Select[Range[ 111000],CompositeQ[ #]&&dc8Q[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2020 *)

Extensions

Offset corrected by Amiram Eldar, Nov 07 2019

A062679 Numbers such that every divisor (except 1, but including the number itself) contains the digit 9.

Original entry on oeis.org

19, 29, 59, 79, 89, 97, 109, 139, 149, 179, 191, 193, 197, 199, 229, 239, 269, 293, 349, 359, 379, 389, 397, 409, 419, 439, 449, 479, 491, 499, 509, 569, 593, 599, 619, 659, 691, 709, 719, 739, 769, 797, 809, 829, 839, 859, 907, 911, 919, 929, 937, 941, 947
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

Different from A106093. 1691 = 19 * 89 is the smallest term that is not in A106093. - Franklin T. Adams-Watters, Apr 30 2007

Examples

			7961 has divisors 19, 419 and 7961, all of which contain the digit 9.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..1000] | forall{Divisors(n)[i]: i in [2..NumberOfDivisors(n)] | 9 in Intseq(Divisors(n)[i])}]; // Bruno Berselli, Nov 21 2015
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1000], fQ[#, 9] &] (* Robert G. Wilson v, Jun 11 2014 *)
    d9Q[n_]:=First[Union[DigitCount[#,10,9]&/@Rest[Divisors[n]]]]>0; Select[ Range[ 2,1000],d9Q] (* Harvey P. Dale, Sep 12 2014 *)
  • PARI
    isok(n) = {if (n==1, return (0)); d = divisors(n); for (k=1, #d, if ((d[k] != 1) && (vecmax(digits(d[k])) != 9), return (0));); return (1);} \\ Michel Marcus, Nov 21 2015
    

A062680 Composite numbers whose divisors (except 1) all contain the digit 9.

Original entry on oeis.org

1691, 2291, 3629, 5191, 5539, 5597, 6931, 7391, 7921, 7961, 8497, 8791, 9101, 9329, 9409, 9481, 9671, 9701, 10981, 10991, 11269, 13129, 13891, 14239, 15089, 15931, 15941, 16999, 17197, 17309, 17879, 17951, 17993, 18091, 18449, 18829, 18943
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			7961 has divisors 19, 419 and 7961, all of which contain the digit 9.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..20000]|  not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 9 in Intseq(d)}];// Marius A. Burtea, Nov 07 2019
  • Mathematica
    fQ[n_] := Union[Drop[Last /@ Sort /@ IntegerDigits[ Divisors[ n]], 1]] == {9}; Select[ Range[ 19110], fQ[ # ] == True && ! PrimeQ[ # ] &] (* Zak Seidov and Robert G. Wilson v, May 17 2005 *)
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 19110], !PrimeQ[#] && fQ[#, 9] &] (* Robert G. Wilson v, Jun 11 2014 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 16 2007

A062653 Every divisor (except 1) contains the digit 2.

Original entry on oeis.org

2, 23, 29, 127, 211, 223, 227, 229, 233, 239, 241, 251, 254, 257, 263, 269, 271, 277, 281, 283, 293, 421, 422, 482, 502, 521, 523, 526, 529, 542, 562, 727, 821, 823, 827, 829, 842, 929, 1021, 1042, 1123, 1129, 1201, 1213, 1217, 1223, 1229, 1231, 1237
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			254 has divisors 1, 2, 127 and 254, all of which contain the digit 2.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..1300]| forall{d:d in Set(Divisors(k)) diff {1}| 2 in Intseq(d)}]; // Marius A. Burtea, Nov 07 2019
    
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1300], fQ[#, 2] &]  (* Robert G. Wilson v, Jun 11 2014 *)
  • PARI
    has2(n)=if(n==1, return(1)); !!setsearch(Set(digits(n)),2)
    is(n)=fordiv(n,d, if(!has2(d), return(0))); 1 \\ Charles R Greathouse IV, Jan 24 2020

Extensions

Offset corrected by Amiram Eldar, Nov 07 2019

A062668 Composite and every divisor (except 1) contains the digit 3.

Original entry on oeis.org

39, 93, 309, 339, 393, 403, 713, 933, 939, 993, 1137, 1293, 1317, 1329, 1333, 1339, 1369, 1389, 1643, 1703, 1839, 1893, 2263, 2319, 2369, 2573, 3013, 3029, 3039, 3071, 3093, 3099, 3107, 3117, 3139, 3151, 3189, 3193, 3197, 3279, 3309, 3369, 3419, 3459
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			93 has divisors 1, 3, 31 and 93, all of which contain the digit 3.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..3500]| forall{d:d in Set(Divisors(k)) diff {1}| 3 in Intseq(d)}]; // Marius A. Burtea, Nov 07 2019
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 3460], !PrimeQ[#] && fQ[#, 3] &] (* Robert G. Wilson v, Jun 11 2014 *)

Extensions

Offset corrected by Amiram Eldar, Nov 07 2019

A062649 Composite numbers with property that every divisor contains the digit 1.

Original entry on oeis.org

121, 143, 169, 187, 221, 341, 361, 451, 671, 781, 961, 1037, 1111, 1133, 1159, 1177, 1199, 1207, 1243, 1271, 1313, 1331, 1339, 1349, 1391, 1397, 1417, 1441, 1469, 1507, 1529, 1573, 1639, 1651, 1661, 1681, 1703, 1717, 1727, 1751, 1781, 1793, 1807, 1819
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

Intersection of A002808 and A062634. - Michel Marcus, Sep 12 2013

Examples

			143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1850], !PrimeQ[#] && fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
  • PARI
    lista(nn) = {forcomposite(n = 1, nn, ok = 1; fordiv(n, d, ok = ok && setsearch(Set(digits(d)), 1)); if (ok, print1(n, ", ")););} \\ Michel Marcus, Sep 12 2013

A243819 Composite numbers n such that every divisor of n greater than one contains the digit 0.

Original entry on oeis.org

10201, 10403, 10609, 10807, 11009, 11021, 31007, 40501, 41303, 41309, 42907, 43709, 50803, 51409, 51809, 60701, 61307, 61903, 64307, 65509, 70801, 71609, 72203, 73027, 75007, 76409, 81709, 91607, 97049, 101909, 102313, 102919, 103121, 103927, 104131, 104333, 104339, 104939, 104957, 105163, 105949
Offset: 1

Views

Author

Barbara W. Waddell and Robert G. Wilson v, Jun 11 2014

Keywords

Examples

			The divisors of 10201 are {1, 101, and 10201}. Except for 1 each has a 0 in its decimal expansion.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 106000], !PrimeQ[#] && fQ[#, 0] &]
    cd0Q[n_]:=CompositeQ[n]&&AllTrue[Rest[Divisors[n]],DigitCount[#,10,0]>0&]; Select[Range[ 106000],cd0Q] (* Harvey P. Dale, Aug 15 2024 *)

Extensions

Definition slightly modified by Harvey P. Dale, Aug 15 2024
Previous Showing 11-17 of 17 results.