cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A174939 a(n) = Sum_{k<=n} A007955(k) * A007955(k) = Sum_{k<=n} A007955(k)^2, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 5, 14, 78, 103, 1399, 1448, 5544, 6273, 16273, 16394, 3002378, 3002547, 3040963, 3091588, 4140164, 4140453, 38152677, 38153038, 102153038, 102347519, 102581775, 102582304, 110177896480, 110177912105, 110178369081, 110178900522, 110660790826, 110660791667
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(3)^2 + b(4)^2 = 1^2 + 2^2 + 3^2 + 8^2 = 78.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[#^DivisorSigma[0, #] &, 29] (* Michael De Vlieger, May 03 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
    
  • Python
    from sympy import divisor_count
    from itertools import count, islice
    def agen():
        an = 1
        for k in count(2):
            yield an
            an += k**divisor_count(k)
    print(list(islice(agen(), 29))) # Michael S. Branicky, May 03 2022

Formula

a(n) = Sum_{k=1..n} A062758(k). - Michel Marcus, May 03 2022

Extensions

a(27) and beyond from Michael S. Branicky, May 03 2022

A236287 a(n) = sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 9, 16, 343, 36, 20736, 64, 50625, 2197, 104976, 144, 481890304, 196, 331776, 331776, 28629151, 324, 3518743761, 400, 5489031744, 1048576, 1679616, 576, 167961600000000, 29791, 3111696, 2560000, 30840979456, 900, 722204136308736, 1024, 62523502209, 5308416
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2014

Keywords

Examples

			a(4) = sigma(4)^tau(4) = 7^3 = 343.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236286.

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^DivisorSigma[0, n], {n, 1000}]
  • PARI
    s=[]; for(n=1, 40, s=concat(s, sigma(n, 1)^sigma(n, 0))); s \\ Colin Barker, Jan 24 2014

Formula

a(n) = A000203(n)^A000005(n).

A290480 Product of proper unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 03 2017
  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}]
    Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
  • PARI
    A290480(n) = if(1==n,n,n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
  • Python
    from sympy import divisors, gcd, prod
    def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
    

Formula

a(n) = A061537(n)/n.
a(n) = n^(2^(omega(n)-1)-1), where omega() is the number of distinct primes dividing n (A001221).
a(n) = 1 if n is a prime power.

A069141 a(n) = n^2*(n+1)!/(n^tau(n)) where tau(n) is the number of divisors of n.

Original entry on oeis.org

2, 6, 24, 30, 720, 140, 40320, 5670, 403200, 399168, 479001600, 300300, 87178291200, 6671808000, 92990177280, 86837751000, 6402373705728000, 1158789632000, 2432902008176640000, 319318388573184, 2548754484756480000, 53413257724968960000, 620448401733239439360000
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

The expression n^2*(n+1)!/(n^tau(n)) is always an integer. n^tau(n) is also the product of square divisors of n (cf. A062758).

Crossrefs

Programs

  • Mathematica
    a[n_] := (n+1)! / n^(DivisorSigma[0,n] - 2); Array[a, 23] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = (n+1)! / n^(numdiv(n)-2); \\ Amiram Eldar, Aug 03 2024

Extensions

a(22)-a(23) from Amiram Eldar, Aug 03 2024

A165797 a(n) = n^( sigma(n) - tau(n) ).

Original entry on oeis.org

1, 2, 9, 256, 625, 1679616, 117649, 8589934592, 3486784401, 100000000000000, 25937424601, 552061438912436417593344, 23298085122481, 83668255425284801560576, 332525673007965087890625
Offset: 1

Views

Author

Jaroslav Krizek, Sep 27 2009

Keywords

Comments

The power of n with exponent given by the difference between its sum of divisors and its count of divisors.

Examples

			a(4) = 4^(sigma(4)-tau(4)) = 4^(7-3) = 4^4 = 256.
		

Programs

  • Mathematica
    Table[n^[ DivisorSigma[1, n] - DivisorSigma[0, n]], {n, 50}]

Formula

a(n) = n^(A000203(n)-A000005(n)) = n^A000203(n) / n^A000005(n) = n^A065608(n).
a(n) = A100879(n) / A062758(n).
a(p) = p^(p-1) for p = prime.

Extensions

Slightly edited by R. J. Mathar, Sep 29 2009

A236288 a(n) = sigma(n)^n / sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 1, 4, 7, 216, 144, 32768, 50625, 4826809, 34012224, 5159780352, 481890304, 4049565169664, 63403380965376, 1521681143169024, 25408476896404831, 6746640616477458432, 12381557655576425121, 13107200000000000000000, 53148384174432398229504, 38685626227668133590597632
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2014

Keywords

Comments

Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(n+1)^(n + 1 - tau(n+1)).
Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(k)^(k - tau(k)) has solution for distinct numbers n and k.

Examples

			a(4) = sigma(4)^(4 - tau(4)) = 7^(4 - 3) = 7.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236287 (sigma(n)^tau(n)).

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^[n - DivisorSigma[0, n]], {n, 50}]
  • PARI
    s=[]; for(n=1, 30, s=concat(s, sigma(n, 1)^(n-sigma(n, 0)))); s \\ Colin Barker, Jan 24 2014

Formula

a(n) = sigma(n)^(n - tau(n)).
a(n) = A217872(n) / A236287(n) = A000203(n)^n / A000203(n)^A000005(n) = A000203(n)^A049820(n).

A277169 Product of squares of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 36, 1, 64, 9, 100, 1, 20736, 1, 196, 225, 4096, 1, 104976, 1, 160000, 441, 484, 1, 191102976, 25, 676, 729, 614656, 1, 729000000, 1, 1048576, 1089, 1156, 1225, 78364164096, 1, 1444, 1521, 4096000000, 1, 5489031744, 1, 3748096, 4100625, 2116, 1, 28179280429056, 49, 6250000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2016

Keywords

Examples

			a(6) = 36 because 6 has 3 proper divisors {1,2,3} and 1^2*2^2*3^2 = 36.
		

Crossrefs

Programs

  • Maple
    seq(n^(numtheory:-tau(n)-2), n=1..50); # Robert Israel, Nov 13 2016
  • Mathematica
    Table[n^(DivisorSigma[0, n] - 2), {n, 1, 50}]

Formula

a(n) = n^(sigma_0(n)-2).
a(n) = n^A000005(n)/A000290(n).
a(n) = A000290(A007956(n))/A000290(n).
a(n) = A000290(A007955(n)/n)/A000290(n).
a(n) = A062758(n)/A000290(n).
a(n) = 1 if n is prime or n = 1 (A008578).
a(n) = n if n is square of prime (A001248).
a(n) = n^2 if n is multiplicatively perfect number (A007422).

A290479 Product of nonprime squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 27000, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 74088, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 27000, 1, 62, 21, 1, 65, 287496, 1, 34, 69, 343000, 1, 6, 1, 74, 15, 38, 77, 474552, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(30) = 27000 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} and 1*6*10*15*30 = 27000.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], !PrimeQ[#] && SquareFreeQ[#] &]}], {n, 80}]
    Table[Last[Select[Divisors[n], SquareFreeQ]]^(DivisorSigma[0, Last[Select[Divisors[n], SquareFreeQ]]]/2 - 1), {n, 80}]
  • PARI
    A290479(n) = if(1==n, n, my(r=factorback(factorint(n)[, 1])); (r^((numdiv(r)/2)-1))); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A078599(n)/A007947(n).
a(n) = rad(n)^(d(rad(n))/2-1), where d() is the number of divisors of n (A000005) and rad() is the squarefree kernel of n (A007947).
a(n) = 1 if n is a prime power.

A332646 Numbers m with a divisor d such that d^tau(d) = m.

Original entry on oeis.org

1, 4, 9, 25, 49, 64, 121, 169, 289, 361, 529, 729, 841, 961, 1296, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10000, 10201, 10609, 11449, 11881, 12769, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2020

Keywords

Comments

Possible values for function n^tau(n) (A062758).
Supersequence of A189991 (numbers with prime factorization p^4*q^4; d = pq), A001248 (numbers with prime factorization p^2; d = p), A030516 (numbers with prime factorization p^6; d = p^2) and A280076.

Examples

			64 is a term because 4^3 = 64; 4 divides 64; tau(4) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | #[d: d in Divisors(n) | d^NumberOfDivisors(d) eq n] ge 1];
    
  • Mathematica
    divPowerQ[n_] := AnyTrue[Divisors[n], #^DivisorSigma[0, #] == n &]; Select[Range[27000], divPowerQ] (* Amiram Eldar, Feb 18 2020 *)
  • PARI
    isok(m) = fordiv(m, d, if (d^numdiv(d) == m, return (1))); \\ Michel Marcus, Feb 18 2020

A069152 a(n) = (n-1)!-n^tau(n)/n^2.

Original entry on oeis.org

0, 1, 2, 23, 84, 719, 4976, 40311, 362780, 3628799, 39896064, 479001599, 6227020604, 87178290975, 1307674363904, 20922789887999, 355687427991024, 6402373705727999, 121645100408672000, 2432902008176639559
Offset: 2

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

n and a(n) have the same parity.

Crossrefs

Cf. A062758.

Programs

  • Mathematica
    Table[(n - 1)! - n^DivisorSigma[0, n]/n^2, {n, 2, 25}] (* Wesley Ivan Hurt, Jan 20 2024 *)
Previous Showing 11-20 of 20 results.